
Problem 1.6 A wave traveling along a string in the+x-direction is given by

y1(x; t) = Acos(ωt�βx);

wherex = 0 is the end of the string, which is tied rigidly to a wall, as shown in
Fig. 1-21 (P1.6). When wavey1(x; t) arrives at the wall, a reflected wavey2(x; t) is
generated. Hence, at any location on the string, the vertical displacementys will be
the sum of the incident and reflected waves:

ys(x; t) = y1(x; t)+y2(x; t):

(a) Write down an expression fory2(x; t), keeping in mind its direction of travel
and the fact that the end of the string cannot move.

(b) Generate plots ofy1(x; t), y2(x; t) and ys(x; t) versus x over the range
�2λ� x� 0 atωt = π=4 and atωt = π=2.
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Figure P1.6: Wave on a string tied to a wall atx= 0 (Problem 1.6).

Solution:
(a) Since wavey2(x; t) was caused by wavey1(x; t), the two waves must have the

same angular frequencyω, and sincey2(x; t) is traveling on the same string asy1(x; t),
the two waves must have the same phase constantβ. Hence, with its direction being
in the negativex-direction,y2(x; t) is given by the general form

y2(x; t) = Bcos(ωt+βx+φ0); (1)

whereB andφ0 are yet-to-be-determined constants. The total displacement is

ys(x; t) = y1(x; t)+y2(x; t) = Acos(ωt�βx)+Bcos(ωt+βx+φ0):

Since the string cannot move atx= 0, the point at which it is attached to the wall,
ys(0; t) = 0 for all t. Thus,

ys(0; t) = Acosωt+Bcos(ωt+φ0) = 0: (2)



(i) Easy Solution: The physics of the problem suggests that a possible solution for
(2) is B=�A andφ0 = 0, in which case we have

y2(x; t) =�Acos(ωt+βx): (3)

(ii) Rigorous Solution: By expanding the second term in (2), we have

Acosωt+B(cosωt cosφ0�sinωt sinφ0) = 0;

or

(A+Bcosφ0)cosωt� (Bsinφ0)sinωt = 0: (4)

This equation has to be satisfied for all values oft. At t = 0, it gives

A+Bcosφ0 = 0; (5)

and atωt = π=2, (4) gives

Bsinφ0 = 0: (6)

Equations (5) and (6) can be satisfied simultaneously only if

A= B= 0 (7)

or

A=�B and φ0 = 0: (8)

Clearly (7) is not an acceptable solution because it means thaty1(x; t) = 0, which is
contrary to the statement of the problem. The solution given by (8) leads to (3).

(b) At ωt = π=4,

y1(x; t) = Acos(π=4�βx) = Acos
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;

y2(x; t) =�Acos(ωt+βx) =�Acos

�
π
4
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2πx
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�
:

Plots ofy1, y2, andy3 are shown in Fig. P1.6(b).
At ωt = π=2,

y1(x; t) = Acos(π=2�βx) = Asinβx= Asin
2πx
λ

;

y2(x; t) =�Acos(π=2+βx) = Asinβx= Asin
2πx
λ

:

Plots ofy1, y2, andy3 are shown in Fig. P1.6(c).
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Figure P1.6: (b) Plots ofy1, y2, andys versusx at ωt = π=4.
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Figure P1.6: (c) Plots ofy1, y2, andys versusx at ωt = π=2.


