Problem 1.6 A wave traveling along a string in the $+x$-direction is given by

$$
y_{1}(x, t)=A \cos (\omega t-\beta x),
$$

where $x=0$ is the end of the string, which is tied rigidly to a wall, as shown in Fig. 1-21 (P1.6). When wave $y_{1}(x, t)$ arrives at the wall, a reflected wave $y_{2}(x, t)$ is generated. Hence, at any location on the string, the vertical displacement y_{s} will be the sum of the incident and reflected waves:

$$
y_{\mathrm{s}}(x, t)=y_{1}(x, t)+y_{2}(x, t) .
$$

(a) Write down an expression for $y_{2}(x, t)$, keeping in mind its direction of travel and the fact that the end of the string cannot move.
(b) Generate plots of $y_{1}(x, t), y_{2}(x, t)$ and $y_{\mathrm{s}}(x, t)$ versus x over the range $-2 \lambda \leq x \leq 0$ at $\omega t=\pi / 4$ and at $\omega t=\pi / 2$.

Figure P1.6: Wave on a string tied to a wall at $x=0$ (Problem 1.6).

Solution:

(a) Since wave $y_{2}(x, t)$ was caused by wave $y_{1}(x, t)$, the two waves must have the same angular frequency ω, and since $y_{2}(x, t)$ is traveling on the same string as $y_{1}(x, t)$, the two waves must have the same phase constant β. Hence, with its direction being in the negative x-direction, $y_{2}(x, t)$ is given by the general form

$$
\begin{equation*}
y_{2}(x, t)=B \cos \left(\omega t+\beta x+\phi_{0}\right), \tag{1}
\end{equation*}
$$

where B and ϕ_{0} are yet-to-be-determined constants. The total displacement is

$$
y_{\mathrm{s}}(x, t)=y_{1}(x, t)+y_{2}(x, t)=A \cos (\omega t-\beta x)+B \cos \left(\omega t+\beta x+\phi_{0}\right) .
$$

Since the string cannot move at $x=0$, the point at which it is attached to the wall, $y_{\mathrm{s}}(0, t)=0$ for all t. Thus,

$$
\begin{equation*}
y_{s}(0, t)=A \cos \omega t+B \cos \left(\omega t+\phi_{0}\right)=0 . \tag{2}
\end{equation*}
$$

(i) Easy Solution: The physics of the problem suggests that a possible solution for
(2) is $B=-A$ and $\phi_{0}=0$, in which case we have

$$
\begin{equation*}
y_{2}(x, t)=-A \cos (\omega t+\beta x) \tag{3}
\end{equation*}
$$

(ii) Rigorous Solution: By expanding the second term in (2), we have

$$
A \cos \omega t+B\left(\cos \omega t \cos \phi_{0}-\sin \omega t \sin \phi_{0}\right)=0
$$

or

$$
\begin{equation*}
\left(A+B \cos \phi_{0}\right) \cos \omega t-\left(B \sin \phi_{0}\right) \sin \omega t=0 \tag{4}
\end{equation*}
$$

This equation has to be satisfied for all values of t. At $t=0$, it gives

$$
\begin{equation*}
A+B \cos \phi_{0}=0 \tag{5}
\end{equation*}
$$

and at $\omega t=\pi / 2$, (4) gives

$$
\begin{equation*}
B \sin \phi_{0}=0 \tag{6}
\end{equation*}
$$

Equations (5) and (6) can be satisfied simultaneously only if

$$
\begin{equation*}
A=B=0 \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
A=-B \quad \text { and } \quad \phi_{0}=0 \tag{8}
\end{equation*}
$$

Clearly (7) is not an acceptable solution because it means that $y_{1}(x, t)=0$, which is contrary to the statement of the problem. The solution given by (8) leads to (3).
(b) At $\omega t=\pi / 4$,

$$
\begin{aligned}
& y_{1}(x, t)=A \cos (\pi / 4-\beta x)=A \cos \left(\frac{\pi}{4}-\frac{2 \pi x}{\lambda}\right) \\
& y_{2}(x, t)=-A \cos (\omega t+\beta x)=-A \cos \left(\frac{\pi}{4}+\frac{2 \pi x}{\lambda}\right)
\end{aligned}
$$

Plots of y_{1}, y_{2}, and y_{3} are shown in Fig. P1.6(b).
At $\omega t=\pi / 2$,

$$
\begin{aligned}
& y_{1}(x, t)=A \cos (\pi / 2-\beta x)=A \sin \beta x=A \sin \frac{2 \pi x}{\lambda} \\
& y_{2}(x, t)=-A \cos (\pi / 2+\beta x)=A \sin \beta x=A \sin \frac{2 \pi x}{\lambda}
\end{aligned}
$$

Plots of y_{1}, y_{2}, and y_{3} are shown in Fig. P1.6(c).

$$
\omega \mathrm{t}=\pi / 4
$$

Figure P1.6: (b) Plots of y_{1}, y_{2}, and y_{s} versus x at $\omega t=\pi / 4$.

Figure P1.6: (c) Plots of y_{1}, y_{2}, and y_{s} versus x at $\omega t=\pi / 2$.

