Problem 7.7 An RHC-polarized wave with a modulus of $2(\mathrm{~V} / \mathrm{m})$ is traveling in free space in the negative z-direction. Write down the expression for the wave's electric field vector, given that the wavelength is 6 cm .

Figure P7.7: Locus of \mathbf{E} versus time.

Solution: For an RHC wave traveling in $-\hat{\mathbf{z}}$, let us try the following:

$$
\mathbf{E}=\hat{\mathbf{x}} a \cos (\omega t+k z)+\hat{\mathbf{y}} a \sin (\omega t+k z)
$$

Modulus $|E|=\sqrt{a^{2}+a^{2}}=a \sqrt{2}=2(\mathrm{~V} / \mathrm{m})$. Hence,

$$
a=\frac{2}{\sqrt{2}}=\sqrt{2}
$$

Next, we need to check the sign of the $\hat{\mathbf{y}}$-component relative to that of the $\hat{\mathbf{x}}$-component. We do this by examining the locus of \mathbf{E} versus t at $z=0$: Since the wave is traveling along $-\hat{\mathbf{z}}$, when the thumb of the right hand is along $-\hat{\mathbf{z}}$ (into the page), the other four fingers point in the direction shown (clockwise as seen from above). Hence, we should reverse the sign of the $\hat{\mathbf{y}}$-component:

$$
\mathbf{E}=\hat{\mathbf{x}} \sqrt{2} \cos (\omega t+k z)-\hat{\mathbf{y}} \sqrt{2} \sin (\omega t+k z) \quad(\mathrm{V} / \mathrm{m})
$$

with

$$
k=\frac{2 \pi}{\lambda}=\frac{2 \pi}{6 \times 10^{-2}}=104.72 \quad(\mathrm{rad} / \mathrm{m})
$$

and

$$
\omega=k c=\frac{2 \pi}{\lambda} \times 3 \times 10^{8}=\pi \times 10^{10} \quad(\mathrm{rad} / \mathrm{s})
$$

