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Abstract— The dyadic Green function for an anisotropic, inhomogenous medium is
reformulated as a double differential form by embedding material properties in the
Hodge star operator. The usual definition of the star operator must be modified in
order to allow treatment of media with nonsymmetric permeability or permittivity
tensors. This formalism simplifies the manipulation of differential operators in the
anisotropic case. An integral equation is obtained which relates the Green form for

the electric field to a generalization of the usual isotropic scalar Green function.
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1. INTRODUCTION

In this paper we treat the Green form for an anisotropic, inhomogenous, and nonbian-
isotropic medium. The importance of special cases of this general problem is noted by
Moskvin, et al. [1]. Ren [2] and others. We recover the usual results for electric field due to
impressed sonrces and derive a new integral equation relating the Green form to a general-
ization of the usual scalar Green function for isotropic media.

In a previous paper (3], we treated the reformulation of the dyadic Green function for
isotropic media as a double differential form [4]. Here we treat the anisotropic, inhomoge-
neous case by embedding material properties into the Hodge star operator. Such an approach
is suggested by Bamberg and Sternberg [5]. The usual definition of the Hodge star operator
must be modified slightly in order to allow the treatment of nonreciprocal or lossy media.
This formalism simplifies the derivation of the anisotropic generalization of Huygens’ princi-
ple and other results as compared to the usual dyadic notation, due to the use of the product
rule for the exterior derivative, the generalized Stokes theorem, and other identities of the
calculus of differential forms.

For an isotropic medium, the Green form for the electric field can be obtained in terms of
the scalar Green function of the Helmholtz wave equation [3]. We obtain a generalization of
this relationship which is valid for anisotropic, inhomogeneous media. The scalar Helmholtz
equation extends in a natural way to an anisotropic, inhomogeneous medium, and the Green
form for this anisotropic Helmholtz equation is a generalization of the scalar Green function
for an isotropic medium. The anisotropic Helmholtz Green form is related to the Green form
for the electric field by an integral equation.

By specializing to a homogeneous medium, the integral equation and definitions for the
Green forms can be transformed to the wavenumber representation, leading to expressions
for the Green form for the electric field and the Fresnel equation valid for nonreciprocal or
lossy media. For a homogeneous medium, the Helmholtz Green form can be obtained exactly
in physical space, so that the integral equation leads to a new representation for the Green
form for the electric field. For a biaxial medium, the series solution for the integral equation
relating the two Green forms can also be resummed in the wavevector representation, yielding
an expression similar in form to the usual relationship between the Green form and the scalar
Green function for an isotropic medium.

We employ a suppressed e~ “* time dependence throughout this paper.

2. THE GREEN DOUBLE FORM

We consider in this paper electromagnetic propagation in a nonbianisotropic medium
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with macroscopic electromagnetic properties characterized by invertible permittivity and

permeability tensors €;;(r) and p;;(r). Maxwell's laws are

dE = iwB (1a)
dH = —iwD+J (1b)
dD = p (1e)
dB = 0 (1d)

where E and H are the electric and magnetic field intensity 1-forms, D and B are the
electric and magnetic flux density 2-forms, J is the electric current density 2-form, and p is
the electric charge density 3—form.

In order to represent the constitutive relations on differential forms, we define the Hodge
star operators . and %, using the permittivity and permeability tensors respectively, as

described in the Appendix. The constitutive relations can then be written

D = % E (2a)
B = *hH. (2b)

In rectangular coordinates,

*e(El dx + E» dy + E5 dZ) = (611E1 + €105 + 613E3) dy dz+
) (621E1 + €90 Fy + 623E3) dz dx+ (3)
(631E1 + 632E2 + E33E3) dx dy
where for conciseness the wedges denoting the exterior product between differentials are
omitted. If the star operator %, is applied to a 2—-form,
*e(Dydydz + Dydzdz + Dydzdy) = (e"'Dy + €2Dy + '3 Ds) dr+

(621D1 + 622D2 + 623D3) dy+ (4)
(31D + €32Dy + €33 D3) dz

where the €% are components of €7}. On 1-forms and 3—forms,
*x.1 = (dete;;) drdydz (5)

The magnetic star operator %, behaves similarly. As discussed in the Appendix, the inverses

1 1 = X,, where the

of these star operators for nonreciprocal media are x,™* = %, and x;~
tilde denotes transposition of the metric tensor in the definition of the star operator. For
reciprocal media characterized by symmetric permittivity and permeability tensors, x, = %,
and x, = *xp.

From Maxwell’s laws and the constitutive relations, it follows that
(—pdxnd + wxpxe ) E = —iwky J. (6)
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The Green double 1.3 1 form G for the differential equation (6) is given by
(—*nd¥pd + wPpxe)G(ry, 15) = —x46(ry — 13)1. (7)

where [ is the unit 2@ 1 form dy, dz, @ dxy + dz, dz, ® dy, + dz; dy, ® dz, and @ denotes
the tensor product. Operators act on the r; coordinates unless otherwise noted or there is no
ambiguity in an expression. The star operators are in general functions of position, and they
are assumed to be evaluated at the coordinate of the differentials on which they operate. In

rectangular coordinates, the Green form G has components
Gi;(ry, 1) d:ci ® d:vg

where the superscripts index the coordinates dz, dy, and dz.
In order to treat the general, nonreciprocal case, we define the transpose of G to be the
1 ® 1 double form G satisfying

(—Fndind + Wk x)G(r1, 19) = —Fpb(ry — 13)1. (8)

Our definition for G differs from Chew’s [6] definition for the dyadic Green function for an
anisotropic, inhomogeneous medium due to the presence of an additional factor of *p, on the
left-hand side of (8).

Let L and L be the differential operators of Egs. (7) and (8) respectively. In order to obtain
the electric field in terms of G, the operators L and L must be such that a relationship of
the form

Ey A (34LE,;) — Ey A (54 LE,) = dP (9)
holds for arbitrary E) and E,. This approach follows the usual formal theory of the Green
function for an arbitrary operator, in which conditions for symmetric and self-adjoint Green
functions are easily related to properties of the differential operator and boundary condi-
tions. This allows relationships between G and G for reciprocal and lossless media to be
conveniently obtained in Sec. 2.2.

The product rule for the exterior derivative [5], d(a A B) = (da) A B+ (=1)%9%q A dj,
and the relationship v AxA = (=1)P("=P)%y A A for p-forms v and A obtained in the Appendix

can be used to show that
d(Ey N *hdEy + x4 dEy A Ey) = dxpdEy A Ey — Ey A ddE,. (10)
Applying this identity to (9) yields
P =FE| AN *pdEy + %, dE, A E, (11)

for the boundary term. Note that star operators cannot be moved across the exterior prod-

ucts in this expression since E; and E, do not have the same degree as dF, and dF;.
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Integrating Eq. (9) over a volume V) and applying the generalized Stokes theorem

o= h w

yields a generalization of Green’s theorem for the operators L and L,
E\AGaLEy) = [ Ba A (nLE) = | P - (13)

Vi Vi Vi
where 9V, denotes the boundary of V;. Replacing E)(ry) with G(ry,ry) in (13) and using
the definition (8) produces the generalized Huygens principle for anisotropic, inhomogeneous

media,

E(r;) = iw /V1 G(ry,ry) AJ(ry) + /{)Vl [iw@(rl,rz) A H(ry) + x,dG(r1,T2) A E(rl)] (14)
This is equivalent to the dyadic result given in [6]. Note the absence of surface normal vectors
in (14); normal F£ and H fields naturally do not contribute to the surface integration.

The corresponding dyadic derivation requires the use of vector identities which with dif-
ferential forms are immediate consequences of the product rule for the exterior derivative
and the generalized Stokes theorem. When the calculus of differential forms is employed,
manipulations rely on basic properties of the exterior derivative and the star operator rather
than tabulated identities. Further simplification results from the fact that the anisotropic
star operator has nearly the same properties as the isotropic star operator. For these reasons,
differential forms are ideal for coordinate—free manipulations such as those performed in this

paper.

2.1 Boundary Conditions

In this section, we seek‘ to determine boundary conditions on E; and Fj such that the surface

term on the right-hand side of (13) vanishes. If the fields satisfy boundary conditions such

that the surface term vanishes, then replacing F;(r;) with G(rl, ry) and Es(r;) with G(ry,r3)

n (13) shows that

é(l‘g,l‘z) = G(ry,r3). (15)

" Thus, for properly chosen boundary conditions, G is the transpose of G. We discuss radi-

ation boundary conditions, Neumann (magnetically conducting), and Dirichlet (electrically
conducting) boundary conditions.

Since the operator L is not in general self-adjoint, E; and E; will satisfy different bound-

ary conditions. The condition for E; will be related to that for E; by transposition of star

operators. Suppose that F; and H; have the asymptotic behavior

k
lim 7 |Hy — *p—dr A El] =0 (16)
r—o00 w
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and F, and H, satisfy the transposed condition

k
lim r HQ“;h—dT/\EQ =0 (17)
w

r—00

where we assume that the medium is such that outgoing waves have r~! dependence and
that k(r) is determined by the particular form of the outgoing waves. Using Faraday’s law
and the constitutive relation B = x, H, we obtain *,dF; = iwH,. By the transpose of this

relationship, x,dEy = iwH;,. Thus, P can be put into the form
P:/l'CU(El/\HQ‘{'Hl/\EQ). (18)

Let V} is a sphere with radius r. The surface integral term of (13) is then

/ P = / iW[ElA(;hEdTAE2)+H1/\E2]
ov 2% w
k
= / iu)[——*h(l‘) dT/\E1+H1}/\E2
oV w

which vanishes by the condition (17).

For electrically conducting boundary conditions, the 1-forms F; and E, will be oriented
perpendicular to the boundary, so that if n is a coordinate normal to the boundary, E; and
E, are proportional to dn. The 2-forms F; A Hy and H; A E, therefore must each contain
a factor of dn. Since the surface integration is over all coordinates except n, the boundary
term of (13) vanishes and Eq. (15) holds. The surface term also vanishes for magnetically

conducting boundary conditions by the same reasoning.

2.2 Symmetry and Self-Adjointness Conditions

The conditions on the permeability and permittivity tensors for reciprocal and lossless media
can be related to the symmetry and self-adjointness of G. For a reciprocal medium, *, = %
and x, = %.. By definition, in order for the operator x,L to be symmetric with respect to
the reaction inner product

<E,J>=/VE/\J (19)

where F is a 1-form and J is a 2-form, we must have
/El/\(*hLEz) :/ Es A (<sLE)). (20)
v v

By Ampere’s and Faraday's laws, (20) is equivalent to

/VE,/\J2:/VE2/\J1 (21)
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which vanishes by the definition of reciprocity. Thus, for a reciprocal medium, the operator
L is symmetric. (We assume that E) and Ej satisfy the same boundary condition, since an
operator may be equal to its transpose but still not represent a symmetric boundary value
problem unless the operator and its transpose also operate on the same domain of a function
space.) The derivation of (13) shows that the equality (20) leads to the Lorentz reciprocity

theorem
/V(EI/\H2+H1/\E2):O. (22)
7]

for a medium with symmetric but otherwise arbitrary permittivity and permeability tensors.
Replacing E, with G(ry,ry) and E; with G(ry,r3) in Eq. (20) gives the reciprocity relation
(6]

G(r3,ry) = G(r2,13) (23)

for a medium with symmetric permittivity and permeability tensors.

A lossless medium is characterized by hermitian permittivity and permeability tensors,
so that x, = *.* and *, = %,", where the superscript * denotes complex conjugation of the
coefficients of the permittivity and permeability tensors in the definition of the star operator.
If %, L is self-adjoint with respect to the inner product

<E,J>=/VE*/\J (24)
we must have that o,
[ Ei A GaLEy) = [ [ Ein (;hLEl)] . (25)
Using (6), this is equivalent to
/VE{‘/\J2=/VE2/\J{‘. (26)

Using a modification of the derivation of (13), we obtain

| Bi A GaLEs) - UV E; /\(;hLEl)} =i [ (B{AHy+ H AEy). (27)

The surface integral term on the right-hand side vanishes for a properly chosen boundary
condition on E; and E,, including any of those discussed in Sec. 2.1, so that G is self-adjoint
with respect to the inner product (24). Replacing E; with G(ry,r) and E; with G(ry, r3)
in Eq. (25) then yields

G*(r3, ) = G(ry,r3) (28)

for a lossless medium and fields satisfying appropriate boundary conditions.
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3. GREEN FORM FOR THE ANISOTROPIC HELMHOLTZ EQUATION

In general, the operator L of Eq. (6) is not diagonal. This makes the Green form G
difficult to obtain in physical space. Adding dx,d*,E to both sides of Eq. (6) yields

(Ah + u}z*h*e)E = —iw*hJ -+ d*hd;hE (29)

where A, is the wave operator in the metric due to the permeability of the medium and is
defined in the Appendix. The operator Ay is diagonal, so that the inverse g of the operator
Aj, + w?px, can be obtained in some cases for which no analytic solution for G is known.

We therefore define the Green 1 @ 1 form g for the anisotropic Helmholtz equation,
(Ah + wZ*h*e)g(rl, I‘g) = —(5(1'1 — I‘z)[ (30)

where operators act on the 7 coordinate and I is the unit 1®1 form. In an isotropic medium,
g = p2gol, where gy = e**0" /(47r) is the usual scalar Green function.

Note that in Eq. (30) we have not included the %, operator on the right-hand side as was
done in Eq. (7). With the Helmholtz Green form, we modify the form of the definitions of G
and G as well as the definition of the inner product used in the Green theorem (13) in order
to make use of the symmetry of Ap. Thus, the adjoint 2 ® 1 Green form § is defined to be

(Ap + Wi exp)G(r1,12) = —8(ry — 12)] (31)
where [ is the unit 2 ® 1 form. We seek to obtain a relationship of the form
Cy AME, — Ey AMCy = dQ (32)

where E, is an arbitrary 1-form, C} is an arbitrary 2-form, and M and M are the differential

operators used in the definitions of ¢ and § respectively. The surface term can be shown to

be
Q = ;hcl A ;thg + *hd;hCl A E2 + C1 A ;hd*hEQ — *th’l A *hEg. (33)

From (9) we have that

ME, — iC, = ,
/;/C']A 2 K/E2AMC1 /aVQ (34)
Substituting g(ry, ry) for Ci(r) and using Eqs. (29) and (31),
E(ry) = iw / §(ry, 1) A J(r1) — / G(r1, ) A dindsnE(ry) + [ R (35)
Vi W o

where R is o } o
R = *,g(ry,v9) A *pdE(ry) + *pd*pg(ry,r9) A E(11) (36)
+§(I‘1, 1'2) A ;hd*hE(rl) - *hdg}(rl, 1'2) A *hE(rl)
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Integrating the second term on the right-hand side of (35) twice by parts cancels two of the
terms of R, leaving
E(r) = iw [ §(rima) AsaJ () - || Fadindi(ri,r2) A B(r) + / R, (37)
Vi Vi ovy

where the operator *,d%,d acts on the ry part of § and
R1 = ;hg(rl, r2) A ;\’th(I‘l) + *hd;hg(rl, r2) A E(I‘l). (38)

Assuming that *,§ and E satisfy boundary conditions such that the surfacc integral term
vanishes, Eq. (37) reduces to

E(ry) = iw /V1 g(ry,r2) AxpJ(ry) — /v1 *pdFndg(ry, r2) A E(ry) (39)
which is an integral equation for E in terms of the source J and Helmholtz Green form g.
It may be possible to employ this equation as a basis for numerical techniques for treating
propagation and scattering problems in anisotropic media.

The integral equation (39) is valid for an arbitrarily anisotropic, inhomogeneous medium.
Two special cases are of greatest interest. For a homogeneous, anisotropic medium, the
Helmholtz Green form can be found exactly, as will be shown in the next section. For an
electrically inhomogeneous, isotropic medium, finding the Helmholtz Green form (for some
boundary condition) reduces to the determination of the Green function g, for the scalar

wave equation

[A + k*(r)]u(r) = f(r) (40)

where u(r) is a function. The Helmholtz Green form is then pdg.I. Thus, Eq. (39) connects
scalar scattering for an electrically inhomogeneous, isotropic medium with the full scattering
problem for the electric field E.

3.1 Integral Relationship Between G and g

Substituting §(ry,r2) for Ci(r) and G(ry,r3) for E; in Eq. (34) and following a procedure
similar to the derivation of (39), we obtain the integral equation
G(r1,ry) = *pg(r, 1) — /;/ *pdxndg(rs, r1) A G(r3, r2). (41)
3
which is similar in form to Dyson’s equation. This relationship generalizes the usual rela-
tionship between the scalar Green function and the Green form for isotropic media [3]. By

repeated substitution on (41) we obtain the formal series solution for G,

Gz;hg_/;hd;hdgA;hg+//;hd;hdg/\;hd;hdg/\;hg .. (42)
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The series is divergent; each term after the first can be thought of as the field due to an infinite

volume current density. For a biaxial medium, however, the wavevector representation of

this series can be resummed.

3.2 Symmetric Permeability Tensor

For a symmetric permeability tensor, we can simplify expressions (39) and (41) by using the
modified definitions
(Ap + wWpke)g = —*n61 (43a)
(Ap + wPrnke)§ = —Hndl (43b)

where ¢ and § are 1 ® 1 forms and I is the unit 2 ® 1 form. For a symmetric star operator,

we can obtain an identity of the form
E1 A *hMIEQ - E2 AN *hN/IIEl = dQ/ (44)

which replaces Eq. (32).
One can show that with the modified definition of g, Eq. (39) simplifies to

E(I‘Q) = luJ/ g(l‘l, I‘Q) A J(I‘l) - / *hd*hd*hg(l'l, r2) N E(I‘l) (45)

Vl Vl

The integral equation (41) becomes
é(l‘l, 1'2) = g(l’l, 1'2) - A/ *hd*hd*hg(l‘g, 1'2) A é(l‘l, 1'3) (46)
3

for a symmetric *, operator and the modified definitions (43).
It is interesting to compare (45) to the expression for E obtained from the usual rela-
tionship [3] between G and g for an isotropic medium. For an isotropic medium, Eq. (45)

becomes
EziwuongJ—/*d*d*gAE (47)

where ¢ has been scaled by ud to agree with the standard definition for the scalar green
function. The usual expression for the G in terms of g yields

E:z’wuo/gl\J—/*d*d*g/\(—i*J) (48)

for the electric field. These two expressions are identical except for the replacement of E
with —i/(we) x J.
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4. HOMOGENEOUS MEDIA

For a homogeneous medium, by spatial symmetry the components of ¢ are shift-invariant
functions g;;(r, —r1), and the integral in (41) is a convolution. The spatial Fourier transform
of Eq. (41) is then

1
G=g¢"p '+ WngkTuG (49)

where k is the wavevector. In this and later expressions, G and § denote the matrices of the

Fourier transforms of the coefficients of the double forms. Solving for G,

-1
. 1
G = [ugT o de tM,ukkT } : (50)

The Fourier transform of Eq. (31) shows that
-1
N -1
g= [d ” (kT uk)I — " p” ] (51)

where [ is the identity matrix. Eq. (7) gives an alternate expression for G,

-1

G = [-Tu"'T — W] (52)
where
0 —k, Ky
—k, ks O
Substituting (51) into (50) gives
1 1 i
G=|-—pkk"p+ —(k pk)p — w? 54
[ det u+dew( pk)p — w e} (54)

which is equivalent to the result obtained in [7]. The poles of G dominate the inverse Fourier

transform in the far field, so that

1
d —— kKT — (k7T lel =
et [ Tt n kk' p + d > (k" uk)I — w’p e] 0 (55)

is the Fresnel equation (7, 8] for a medium with homogeneous but otherwise arbitrary (in-
vertible) permittivity and permeability tensors.
The definition (80) of the wave operator A, for a homogeneous medium yields the identity
1
KT pk)I = p 077 — — kK7 56
~ e tu( pk) 7 e (56)
when Fourier transformed. This expression shows the utility of Ay, which has diagonal

wavevector representation for an arbitrary (homogeneous) permeability tensor.
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If u;; is diagonalizable by a rotation, then the inverse transform of §(k) can be obtained.
From Eq. (51),

-1
~ 1 ik.r T 2T, Tt

= —= [ dké' k' uk)I — 57

i) = s | e [dt< pIOT — e (57)

where r = r; — ry. Rotating coordinates so that p,; is diagonal and performing a change of

variables, this becomes

3 2
g(r) — 1 (det,u / /dk{ 1\/detp(k’ a;/,/ +k y/ f"_‘+klz/ /—) [klzl_ w2 TALT 1] (58)
(2m)3 V123

where 1, pg, and us are the eigenvalues of x;; and «, y, and z are the components of r. Let
det p(kx/\/i1 + ¥y/\/lz + 22/\/li3). By rotating k' so that k; is in the r direction,

§(r) = det“ / K sin 6 dk’ d dg e*'"<*? [k — W%TMT“]_I . (59)
Integrating the angles
d t 1= 1= ~11-1
4:;’2/’1’ /k dkl k7 —lk ) [klzl _ w2€T,UT 1] . (60)

This iutegral can be performed if eTuT_ has a square root.
The matrix ¢ u7 " is not in general diagonalizable [7], but it has a Jordan normal form
SJS-1. Consider one of the Jordan blocks of J, with A\ = re*®. For this block, we construct

the square root
At VET kfreiel2 £1/(2,/retel?)

_ ... : .' | (61)
1 L 41/(24/reiel?)
A +/rei/?

where the sign is chosen so that Re{=/7¢*®/?} is positive; the other root can be discarded by
causality. The right-hand side of (61) exists since ¢;; and u;; are by assumption invertible,
so that eTpT—l has no zero eigenvalues. In this manner, we can construct J*/2, so that

K = wSJY25-1 is a square root of w?eTuT~'. Equation (60) then becomes

5 det KE o ik'F - -
g(r) = 812.72‘; [k (¥ — ) (K = K) + (' + K) 7] (62)
This can be rewritten as
_detp [ ik - Lik'F -
= / d' [e%7 (K — K)™' — e ¥ (K - K)7Y]. (63)

By causality, the second term can be discarded, and the final result is

eiKi'

g(r) = (det p) (64)

4rr
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for the transpose of the Helmholtz Green form satisfying radiation boundary conditions
for a homogeneous medium with diagonalizable permeability tensor. Note that the matrix
exponential can be computed in closed form from the Jordan normal form of K.

If T " s diagonal, then § is also diagonal. For symmetric or hermitian €;; and p;,
this is equivalent to the simultaneous diagonalizability of €;; and y;;. An important special
case of this situation is a homogeneous, magnetically isotropic medium with diagonalizable

permitivity tensor, or a biaxial medium. This case is discussed in the next section.

4.1 Biaxial Media

In this section we treat a magnetically isotropic medium (p;; = pod;;) with diagonalizable
permitivity tensor. For convenience, in this and following sections we scale G by a factor of
o and g by a factor of x2. If the coordinates system is transformed so that the permittivity

tensor is diagonal with eigenvalues ¢;, then g(k) has the diagonal elements

1
gi = R, (65)
where kg; = w,/€; g and other elements vanish. In physical space,
eikoir
gi(r1,12) = - (66)
where r = |r; — 1y
By repeated substitution and rearrangement of (49), the series
G =g + gkk" g + gkk” gkkTg + - -- (67)

is obtained. Matrices factor out to the right and left, leaving a scalar geometric series in
k' gk,
G=g+g[l+k gk +&Tgk)? + -] kkTg (68)

Summing this series gives

g T
—g+<1 ng]) g (69)

In the electrically isotropic case, (1 — k% gk)g~"! reduces to —k2I, where k2 = w?eopg, SO
that this expression in physical space reduces to the usual isotropic expression [3, 9] for G

in terms of g,
G=<1+7§§*d*d>g0[ (70)
0

where the derivatives act on the 2-form part of g. Note also that the series (68) is singular
for values of k that represent allowed plane waves, so that

kigk =1 (71)
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is another form of the Fresnel equation (55).

5. CONCLUSION

In order to conveniently represent macroscopic electromagnetic properties of a medium,
we have defined anisotropic Hodge star operators in which the permitivity and permeability
tensors of the medium are embedded. The use of these operators along with other tools of
the calculus of differential forms makes expressions concise and simplifies manipulations. We
also place the Green form derivation in the context of the usual formal treatment of Green
functions, so that the origin of symmetry and self-adjointness properties becomes clear.

The primary result of this paper is a generalization of the usual relationship between
the scalar and tensor Green functions for isotropic media. This relationship becomes an
integral equation connecting the Helmholtz Green form to the Green form for the electric field
which is valid for arbitrarily anisotropic and inhomogeneous media. The Helmholtz Green
form satisfying radiation boundary conditions can be obtained exactly in physical space
for a homogeneous medium with diagonalizable permittivity tensor. Due to the general
advantages in stability of numerical mecthods for solving integral equations as opposed to
differential equations, this relationship may be useful as a basis for numerical techniques for
scattering problems in homogeneous media.

One possible extension of this work is investigation of the Neumann series solution for
the Green form. There may be particular types of media or source configurations for which
the series can be summed or the general term represented in a simple form.

Acknowledgments. This material is based in part upon work supported under a National
Science Foundation Graduate Fellowship to KFW.

APPENDIX. THE HODGE STAR OPERATOR

In this appendix, we extend the usual definition of the Hodge star operator to allow its use
in expressing the constitutive relations for nonreciprocal or lossy media. We then obtain an

expression for the inverse of the monsymmetric star operator and prove the identity AAxv =
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+ A\ A v, where A and v are p-forms, for the nonsymmetric case. Finally, we generalize
the definition of the Laplace-de Rham or wave operator to employ the nonsymmetric star

operator.
The star operator x is a linear mapping from p-forms to (n — p)-forms. In terms of a
metric [10],
i i i1j ipJ g ot Jn
*dz‘/\.../\d;r”:g”‘...gph’sjll__]‘n( p)'dx” A A dx (72)
n—p)!

where ¢ is the Levi-Civita tensor, g is the determinant of the metric tensor g;;, n is the
dimension of space, and ¢*/ is the inverse metric. In R® with a positive definite (symmetric)
metric, * = 1. Other definitions exist, such as that of Flanders [11] and Bamberg and

Sternberg [5],
ANV = (*\, V)0 (73)

where v is a p—form, A is an (n — p)—form, o is the volume element /|g| dz' A--- A dx™ and
(, ) denotes the inner product of p—forms determined by g”/. Thirring [10] defines the star
operator to be

*A = Ao (74)

where | denotes the metric-dependent interior product on differential forms. These defini-
tions can be shown to be equivalent.

For symmetric, positive definite permittivity and permeability tensors, we define *, using
(72) with the inverse metric g¥ = e;;/(dete;) and %, with g9 = p;;/(det ;). While a
metric must be symmetric, the definition (72) can be modified to accomodate nonsymmetric
¢;; and 5, corresponding to nonreciprocal or lossy media. For a nonsymmetric g;;, we use
the modified definition

*xdz™ A .. A dx' = gt .giw‘veﬁ_,,j"i dz?**t A - A dzi (75)
(n—p)!
for the star operator. This definition agrees with (72) if all of the eigenvalues of g* are
positive and real. In general, if the usual definition (72) were employed with nonsymmetric
| gij, the star operator thus obtained would differ from that defined by (75) by the phase
lg//9, and the constitutive relations (2) would not be valid. With this modified definition,
the relationships (3) and (4) are obtained for *., with similar behavior for *j.

For nonsymmetric g;;, the star operator is no longer proportional to its inverse, since as
shown below the inverse of the star operator must be defined using (75) with g% replaced
by its transpose g/*. We give this transposed star operator the symbol x. The inverse star
operators *,~! and %,~! are thus defined using (75) with g = ¢;;/(dete;;) and %, with
97 = i/ (det ;).
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We prove that  is proportional to ™' for a nonsymmetric g". Applying the definition
(75) and using the shorthand notation Az A -+ A dz'P = dzt o,

~ Lilodp g kpr1p+1 Enjn 0171 . .. Aipd g kik
*x dr'ttt = m!] priJptl. .. gining G PEkppr . knky. kpC i1 dn dz ?
g kos1d knj i1 dplpt1-dn ki.. .k
— I gFptlUptl .. nln . P p'p 1..-%p
p'(n _ p)'g g g]p+llp+1 g]nlngkp.f.],uknkl.,.kp d‘,‘l"

g kpt1..kn p(n—p) i1-tplptiodn ki .k
= T 1 e (—1) Cky.kn dz™7r
pl(n —p)'

— 9 (_qyt-p) il LS TR S
(n = p)!( 1) BT dakie
= (_1)p(n—p) dz'te.

By linearity the proof extends to general p—forms. Thus,
* = (=P P% (76)

so that in R3, 71 = %.

We also require the identity v A *A = x~'v A X for p-forms v and A. Thirring (10] proves
the result for a symmetric star operator. We generalize to the nonsymmetric case. The
proof is given for simple forms and extends to the general case by linearity. Applying the

definition (75) of the star operator,

dzit A xdg?tIr = (_n_{_gﬁ)_'gjlkl .. -gjkaEklmkn dpil-ipkp+iokn ()
= (_n.\/%_'gjlkx ce gjpkpgklMknsil...ipkm_lmk" d;]jl"‘"
g / kg i1 o
= —(n—{__ﬁghkl e g]pkp(skllm’:p de’l ‘

where 6 here denotes the permutation tensor. Using an explicit representation [12] for 6, Eq.
(77) becomes

dz't ' A wdg?tr = _—( \/§p)' Z g .. - g7 sgn () dztm. (78)
n—p)l5
Rearranging the order of the g7+~ this is transformed into
driv P A xdz?tr = ——( V9 I Z gj"<1)i‘ . ~gj"<P>iPsgn(7r) dxt ™.
n—p);=x
Reversing the steps leading to Eq. (78), we find that
drit A s dpiir = : V9 )'gklil.‘.kpipeklwkn I
n —p)!
N ('n@p)'gklilmkpipakl--.kn(_1)p(n_p) dl‘kﬁlmknjlmh-
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Using the definition of * and (76) shows that
Azt A wdztr = % gt A da?tr (79)

In R3, the inverse star operator can be replaced with *.

Finally, we extend the definition of the Laplace-de Rham or wave operator A to allow
use of the nonsymmetric star operator. A is a generalization of the Laplacian. Variation in
sign conventions for A exists the literature; the two alternatives are found in Bamberg and
Sternberg [5] and Thirring [10]. We choose Thirring’s definition, since it agrees with the sign

of the usual vector Laplacian. Accordingly, we define
Aa = (1) P [(=1)" % dxd + d¥*d*] o (80)

where o is a p-form. This is equivalent to Thirring’s definition for a positive definite (sym-
metric) metric. For a nonpositive definite metric with real eigenvalues it differs by the sign
lgl/g = (—=1)°, where s is the signature of g;;. For a constant g¥, in a particular coordinate
system (80) reduces to
o a2 o
11...2 — if 8 w 11...2
A(w dx p) [/} mdl‘ P (81)

which is the usual expression for the Laplacian if g¥/ is equal to the euclidean metric &;;.
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