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Abstract|We develop a new representation for electromagnetic boundary con-

ditions involving a boundary projection operator de�ned using the interior and

exterior products of the calculus of di�erential forms. This operator expresses

boundary conditions for �elds represented by di�erential forms of arbitrary degree.

With vector analysis, the �eld intensity boundary conditions require the cross prod-

uct, whereas the 
ux boundary conditions use the inner product. With di�erential

forms, the �eld intensity and 
ux density boundary conditions are expressed using

a single operator. This boundary projection operator is readily applied in practice,

so that our work extends the utility of the calculus of di�erential forms in applied

electromagnetics.
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1. INTRODUCTION

In this paper we derive a new formulation for the boundary conditions at a discontinuity

in the electromagnetic �eld using di�erential forms. The utility of the calculus of di�erential

forms in electromagnetic �eld (EM) theory has been demonstrated by Deschamps [1], Bal-

domir [2], Schleifer [3], Thirring [4], Burke [5, 6] and others. The intent of this paper is to

extend the range of engineering problems for which di�erential forms are useful by providing

a practical means of working with boundary conditions.

Thirring [4] and Burke [5, 6] treat boundary conditions using the calculus of di�erential

forms. Thirring's approach is similar to ours, but we extend his methods by introducing a

boundary projection operator to express boundary conditions for forms of arbitrary degree

in a space of arbitrary dimension. The expressions for junction conditions on �eld intensity

and 
ux density, for example, are identical in form.

For many electromagnetic quantities, the vector representation and the representation as

a di�erential form are duals, so that their components di�er only by metrical coe�cients.

This is not the case for the surface current and charge density twisted forms yielded by the

boundary projection operator. It is simpler to compute, for example, total current through

a path using the surface current twisted 1-form than using the usual surface current vector.

In Sec. 2 we derive an expression for boundary sources at a �eld discontinuity using the

boundary projection operator. In Sec. 3 we provide a simple computational example to

illustrate the method. Due to the unfamilarity of most engineers with di�erential forms and

associated notation, our treatment is more elementary than is usual. Accordingly, we also

provide an introduction to the interior product and twisted forms in an Appendix. This work

shows that the calculus of di�erential forms is useful for practical EM problems involving

boundary conditions.

2. BOUNDARY CONDITIONS

In this section we derive an expression for sources on a boundary where the electromag-
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netic �eld is discontinuous. We �nd that generalized boundary conditions can be given

using a boundary projection operator. We then discuss the resulting boundary conditions

for magnetic �eld intensity and electric 
ux density.

2.1 Representing Surfaces With 1-forms

In an n-dimensional space, a 1-form is represented graphically by (n-1)-dimensional hy-

persurfaces. In n-space, a boundary is also an (n-1)-dimensional hypersurface. Thus, we

can use 1-forms to represent boundaries. If a continuous function f(x1; :::; xn) vanishes

(or is constant) along a boundary, then the 1-form df graphically has a surface that lies

on the boundary. The surface of a paraboloid re
ector antenna, for example, is given by

�x2 � y2 + az = 0, so that the unnormalized boundary 1-form is �2x dx � 2y dy + a dz. A

randomly rough surface is written �h(x; y) + z = 0, giving the boundary 1-form �dh+ dz.

For the remainder of this paper we will use the notation

n � df

jdf j =
dfq
df df

(1)

where is the interior product, which is discussed in the Appendix. The 1-form n is dual to

the usual surface normal vector n̂.

2.2 Derivation of the Boundary Projection Operator

In three dimensions, let E be the electric �eld intensity 1-form, H the magnetic �eld intensity

1-form, D the electric 
ux density 2-form, B the magnetic 
ux density 2-form, J the electric

current density 2-form and � the charge density 3-form. Then Maxwell's laws are

dE = � @

@t
B

dH =
@

@t
D + J (2)

dD = �

dB = 0:

Each equation equates the exterior derivative of a di�erential form to the sum of a source

and a nonsingular �eld term, of which one or both may vanish. Recognizing that Maxwell's

Warnick, et al. 3 March 21, 1995



laws have a common form, we can derive an expression for the boundary sources that is the

same for both �eld intensity (1-forms) and 
ux density (2-forms).

Let � be a p-form with p < n (where n is the dimension of space) that represents a �eld

with a (p+ 1)-form � as a source, so that

d� = 
 + � (3)

where 
 is nonsingular. Let f = 0 represent a boundary, where f is C1 and vanishes only

along the boundary. Let � equal �2 for f > 0 and �1 for f < 0.

We can write � = (�2 � �1)�(f) + �1, where � is the unit step function. Then


 + � = df(�2 � �1)�(f) + �1g
= �(f)df ^ (�2 � �1) + �(f)d(�2 � �1) + d�1: (4)

= ~�(f)n ^ (�2 � �1) + �(f)d(�2 � �1) + d�1

where � is the Dirac delta function and ~�(f) is �(x1� x10) � � � �(xn � xn0) such that the point

(x10; :::; x
n
0) lies on the boundary and �(f) =

~�(f)q
df df

. The singular parts of both sides of (4)

must be equal, so that

�0 = ~�(f)n ^ (�2 � �1) (5)

where �0 is the singular part of �, representing the boundary source along f = 0. Since the

source �0 is con�ned to the boundary, it can be written [4]

�0 = ~�(f)n ^ �s (6)

where �s is a p-form, the restriction of �0 to the boundary. Integrating (5) and (6) over a

region containing the boundary shows that the equality

n ^ �s = n ^ (�2 � �1): (7)

must hold on the boundary. We then take the interior product of both sides of (7) by n and

apply the identity (30) to obtain

n (n ^ (�2 � �1)) = n (n ^ �s)

= (n n) ^ �s � n ^ n �s: (8)
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Because n is normalized, n n = 1. Since �s is by de�nition con�ned to the boundary,

n �s = 0. Graphically, the surfaces of �s are perpendicular to the boundary because �s can

contain no factor proportional to n. Applying n �s = 0 to (8), we have

�s = n (n ^ (�2 � �1)) (9)

which is the central result of this paper.

Eq. (9) applies to both nontwisted and twisted forms. As noted below, electromagnetic

sources are conveniently represented by twisted forms. If �s is a twisted form, we must

provide an outer orientation (see Appendix A and Burke [6]) for �s. The orientation is given

by

f(�s;
s)g ^ n ^ �s = 
 (10)

where f(�s;
s)g is a nontwisted (n� p� 1)-form specifying the outer orientation of �s and


 is a volume element (n-form) serving as an orientation for the surrounding n-space. 
s

is a volume element in the boundary, but need not be found in order to obtain the outer

orientation of �s. Given any boundary, there are two possible choices for n. The orientation

speci�ed by (10) is easily seen to be independent of that choice. In right-handed coordinates,

an equivalence can be made between inner and outer orientations, and the orientation of �s

can be taken as that of the (p+ 1)-form n ^ �s.

In Sections 2.4 and 2.5, where (9) is specialized to surface current and surface charge

densities, we provide a simpler means for orienting surface sources. We �nd that the need

for an orientation for �s corresponds precisely to conventions used with the vector calculus

when integrating Js and the scalar surface charge density qs.

Since (9) applies to any situation for which a law of the form (3) is valid, we can use

Maxwell's laws (2) to write at a boundary f = 0,

n (n ^ (E2 � E1)) = 0

n (n ^ (H2 �H1)) = Js

n (n ^ (D2 �D1)) = �s (11)

n (n ^ (B2 �B1)) = 0

where Js is the surface current twisted 1-form and �s is the surface charge twisted 2-form.

In four-space we have dF = 0 and d ? F = j, where F = B +E ^ dt, ?F = D �H ^ dt and
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j = �� J ^ dt. We can express all four boundary conditions as

n (n ^ (F2 � F1)) = 0

n (n ^ (?F2 � ?F1)) = js (12)

where js = �s � Js ^ dt and units are suitably normalized.

The operator n n^ might be termed the boundary projection operator. Graphically, this

operator removes the component of a form with surfaces parallel to the boundary. The

boundary projection of a 1-form has surfaces perpendicular to the boundary. The boundary

projection of a 2-form has tubes perpendicular to the surface at every point.

2.3 Decomposition of Forms at a Boundary

Any form ! of degree less than the dimension of the space we are working in can be decom-

posed using the boundary projection operator and its complementary operation ?�1n n^ ?,

so that

! = n (n ^ !) + ?�1[n (n ^ ?!)] (13)

where the second term on the right-hand side is the component of ! with surfaces parallel to

the boundary. This identity can be proved by expressing ! in terms of orthonormal 1-forms

dxi at a point, verifying (13) for n = dxi and extending to the general case n = ni dx
i,

where
P

i(ni)
2 = 1 using the linearity of the exterior and interior products. The operator

?�1 n n ^ ? can be used to obtain the arbitrary part of a �eld at a boundary.

We discuss special cases of the boundary projection operator for 1-forms and 2-forms

below.

2.4 Surface Current

Surface current is represented by a twisted 1-form. Fig. 1 shows how this 1-form is obtained

from the magnetic �eld intensity at a boundary (Fig. 1a). Fig. 1b shows the 1-form (H2�H1).

(Note that the 1-forms H2 and H1 are both de�ned above and below the boundary even

though each represents the �eld on one side of the boundary only. Thus, we can consider
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H2 � H1 as being de�ned for all space, even though only its value on the boundary is of

interest.) Fig. 1c shows n (n ^ (H2 �H1)). Fig. 1d is the restriction of this 1-form to the

boundary, along with the corresponding vector Js.

Graphically, the boundary projection operator removes any component of H2 �H1 with

surfaces parallel to the boundary. Physically, this expresses both the requirement that surface

current can only 
ow along the boundary and the arbitrariness of the normal component of

H2 �H1 at the boundary.

Most forms in EM theory, such as E, H, D and B, are dual to the corresponding vector

quantity, so that components di�er only by metrical coe�cients. The twisted surface current

1-form Js, however, is not the dual of the vector Js. The nontwisted 1-form with the same

components as Js does not satisfy the simple de�nition given below in (14).

The surface current 1-form Js can be de�ned in terms of the 
ow vector v of a surface

charge distribution �s. The current density 2-form J is J = v �. The surface current density

is Js = �v �s. If �s = q dx dy and the 
ow �eld v = vŷ, then Js = �vŷ q dx dy = qv dx.

The 1-form dual to Js would be qv dy.

The integral of the surface current density over a path should yield the total current

through the path. The 1-form Js as obtained using the boundary projection operator satis�es

this de�nition:

I =
Z
P
Js (14)

where P is a path. The sense of I is with respect to the direction of the 2-form n ^ s,

where s is the 1-form dual to the tangent vector s of P (so that s is a 1-form with surfaces

perpendicular to the path P and oriented in the direction of integration).

The simple integral in (14) replaces a much more cumbersome vector expression. The

total current through P using the usual surface current vector is

I =

Z
P
Js � (n̂ � ds) (15)

where the sense of I is relative to the direction of n̂� ds. Note that this is the same as the

reference direction n ^ s of (14).

The integral in (14) is evaluated in practice by the method of pullback. If a surface S is

parameterized by x = �1(u; v), y = �2(u; v), z = �3(u; v) where u and v range over some
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subset T of the u{v plane, then the integral of ! = !1(x; y; z) dx+!2(x; y; z) dy+!3(x; y; z) dz

over S is

Z
S
! =

Z
T
��!

=

Z
T
!1(�1; �2; �3)d�1 + !2(�1; �2; �3)d�2 + !3(�1; �2; �3)d�3 (16)

where the superscript � denotes the pullback operation. After pullback, the integrand be-

comes a 1-form in du and dv. Partial derivatives of the coordinate transformation enter

naturally via the exterior derivatives of �1, �2 and �3. Eq. (16) is easily generalized to

integrals of 2-forms.

2.5 Surface Charge

Surface charge density due to discontinuous electric 
ux density at a boundary is represented

by the twisted 2-form �s = n (n ^ (D2 �D1)). The boundary projection operator removes

any component of D2 �D1 with tubes parallel to the boundary, as shown in Fig. 2.

The 2-form �s obtained using the boundary projection operator di�ers from the usual

value qs = n̂ � (D2 �D1) because �s is a 2-form, whereas qs is a scalar. The total charge on

an area A of a boundary with surface charge �s is

Q =
Z
A
�s: (17)

Q is positive for positive surface charge if the 2-form ! that satis�es n^ ! = 
 also satis�esR
A ! > 0, where 
 is the standard volume element, dx dy dz in rectangular coordinates. This

corresponds exactly to the convention of choosing dS in Q =
R
A qsdS (where qs is the usual

surface charge density scalar) such that
R
A dS is positive. The sign of the charge represented

by �s can also be found by computing n^�s



.

2.6 Comparison to Burke's Pullback Method

Burke [6] derives an expression for boundary sources using the method of pullback. In his

notation, boundary conditions have the form [H] = Js and [D] = �s. The square brackets
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denote the sum of the pullback of H above the boundary to the boundary and the pullback

of H below the boundary to the boundary, so that

Js = [H] � ��2H2 + ��1H1 (18)

where �2 and �1 are functions of the space above and below the boundary into the boundary.

The pullback method has a concise and elegant proof in [6]. By transforming to a coordi-

nate system x1; : : : ; xn such that a boundary is given by x1 = 0, it can be shown that Burke's

formulation is equivalent to n n^ for n = dx1. Although the pullback boundary conditions

are mathematically very natural, the boundary projection operator has the advantage that

(as with the usual vector formulation) the boundary sources are always expressed in the

same coordinates as the �elds.

3. EXAMPLE

A conducting boundary lies along the surface z = cos y. Above the boundary the magnetic

�eld is H2 = H dx. Below the �eld is zero. This is shown in Fig. 3a.

We can represent the surface by f(x; y; z) = z � cos y = 0. Computing the normalized

exterior derivative of this function,

n =
d(� cos y + z)

jd(� cos y + z)j
=

sin y dy + dzq
1 + sin2 y

: (19)

The boundary projection of H2 is

Js = n n ^H2

=
H

1 + sin2 y
(sin ydy + dz) (sin y dy dx+ dz dx)

=
H

1 + sin2 y
( dx+ sin2 y dx)

= H dx: (20)

Fig. 3c shows the 1-form Js = H dx restricted to the boundary. The direction of the arrow

along the lines of H dx is the orientation of the 2-form n ^ Js.
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Compare the �nal expression for Js in (20) to the vector surface current obtained for

the same �eld and boundary, Js =
Hp

1+sin2 y
(ŷ � sin yẑ). The di�erential form Js = H dx

indicates clearly that the total current crossing a path in the boundary is simply the extent

of the path in the x direction scaled by the factor H. This is not obvious from the vector

expression.

4. CONCLUSION

The boundary projection operator allows one to express electromagnetic boundary con-

ditions using di�erential forms, using the same operator for both �eld intensity and 
ux

density. The di�erent appearances of the �eld intensity and 
ux density boundary condi-

tions expressed using vector analysis is merely an artifact of the mathematical language.

The di�erential forms for boundary sources obtained via the boundary projection operator

di�er from the vectors obtained by standard methods. The surface current 1-form Js, for

example, has a more natural de�nition than the usual surface current vector Js. This 1-form

is readily integrated to yield total current over a path, whereas a vector perpendicular to the

path and tangent to the boundary is required to evaluate the integral for total current using

the surface current vector. The surface current vector also obscures intuitive properties of

the boundary source that are clearly evident when the source is represented by the 1-form

Js. Graphically, a source form is the intersection of the �eld forms with the boundary, for

both the �eld intensity and 
ux density cases.

This method for representing boundary conditions can be easily applied in practical prob-

lems, and so helps to open the way for the use of di�erential forms on a regular basis in

engineering electromagnetics.

Acknowlegements: This material is based in part upon work supported under a National

Science Foundation Graduate Fellowship to KFW.
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APPENDIX A. THE INTERIOR PRODUCT; TWISTED FORMS

In this appendix we provide an introduction to the interior product and twisted forms;

[6, 7] and others provide more comprehensive treatments of the same topics. The interior

product combines a vector (or by abuse of notation, a 1-form) and a p-form to produce a

(p�1)-form. Twisted forms di�er from non-twisted forms in that a twisted form has an outer

orientation rather than an inner orientation and so changes sign relative to a nontwisted form

under re
ection.

A.1 The Interior Product

A di�erential such as dx is traditionally viewed as an in�nitesimal increment of the coordi-

nate x. From the di�erential geometric point of view, dx is actually a basis element of Rn�,

the space of linear functions from vectors in Rn into R. A basis for Rn� is dx1; : : : ; dxn,

which act on basis vectors dx1; : : : ; dxn of Rn (written @
@x1

; : : : ; @
@xn

by the mathematician)

as

dxi[ dxj] =

(
1 i = j

0 i 6= j
(21)

where the square brackets indicate that the di�erential is a function with the vector inside

the brackets as its argument. By linearity, (21) extends to arbitrary 1-forms and vectors.

This de�nition of 1-forms leads directly to the graphical representation of Misner, et al [8].

1-forms become surfaces in space. The value of a 1-form operated on a vector is the number

of surfaces of the 1-form pierced by the vector (see [8] for extensive �gures illustrating this

point).

Integration can be de�ned naturally by using the 1-form to be integrated as a linear

operators on vectors that specify the region of integration. If P is an arbitrary path in space

broken polygonally into n small vectors vi, then the integral of the 1-form ! over P is

Z
P
! = lim

n!1

nX
i=1

![vi] (22)

where the vectors vi become in�nitesimal in the limit. Eq. (22) shows that the graphical

representation of forms as operators on vectors extends to integration of forms over paths:
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the integral of a 1-form over a path is the number of surfaces of the 1-form pierced by the

path.

The interior product is written v ! where v is a vector and ! is a form. If ! is a 1-form,

the interior product of v and ! is

v ! � ![v] (23)

which is simply the de�nition of ! as a linear operator acting on the vector v.

The interior product of a vector and a 2-form follows from the de�nition of a 2-form as

the antisymmetrized tensor product of two 1-forms, so that a^b = a
b�b
a, where a and

b are 1-forms and 
 is the tensor product. The tensor product of 1-forms a and b is de�ned

so that if v and w are vectors, a
 b is a function of two vectors, and a
 b[v;w] = a[v]b[w],

which is a real number. If we operate a ^ b on one vector v rather than two, we obtain the

1-form a[v]b� b[v]a. This is the interior product v (a ^ b). The interior product of x̂ and

dx ^ dy is

x̂ ( dx ^ dy) = dx ^ dy[x̂; � ]
= dx[x̂]
 dy � dy[x̂]
 dx (24)

= dy:

The interior product of a vector v and a p-form a dxi1^: : :^ dxip can be obtained for arbitrary

p by repeated application of the de�nition of the exterior product as the antisymmetrized

tensor product. When a dxi1 ^ : : : ^ dxip is expanded in terms of the tensor product, the

�rst factor of each term operates on the vector v. This can be written conveniently using

the determinant,

v ! = a det

����������

dxi1[v] : : : dxip[v]

dxi1 : : : dxip

...
...

dxi1 : : : dxip

����������
(25)

where the top row of 1-forms operate on v and the determinant then evaluates to a (p� 1)-

form.

We can now de�ne the interior product � ! of a 1-form � and a p-form !. The metric gij

must be used to convert a 1-form to its dual vector (\raising the index"). With the euclidean
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metric, a 1-form and its dual have the same components, so that we can write in R3,

(a dx+ b dy + c dz) ! = (ax̂+ bŷ + cẑ) !: (26)

In curved spaces or curvilinear coordinates, the de�nition becomes

�i dx
i ! = gij�j dxi ! (27)

where gij is the inverse of the metric gij and repeated indices are summed over 1; : : : ; n with

n the dimension of space. gij�j dxi is the vector dual to the 1-form �. The components of

the metric for spherical coordinates are

gij =

2
64 1

r2

r2 sin2 �

3
75 (28)

which along with (27) allow the boundary conditions given in Sec. 2 to be used for geometries

with spherical symmetry.

We note in passing that one can also de�ne the interior product of a p-form and a q-form

for arbitrary p and q using the relation [4]

v ? w = ?(w ^ v) (29)

where ? is the Hodge star operator. If ?? = 1, as is the case for three-dimensional space with

a positive de�nite metric, this can be used to rewrite the boundary projection operator in

terms of the exterior product and star operator as ?[?(n ^ (�2 � �1)) ^ n].

In view of (27), the interior product of two 1-forms is simply their inner product. The

magnitude j�j of a 1-form � is then
p
� � or

p
� �� where the superscript * denotes complex

conjugation if the coe�cients of � are complex.

The interior product distributes over the exterior product by.

� (� ^ 
) = (� �) ^ 
 + (�1)p� ^ � 
 (30)

where p is the degree of �.

A.2 The Interior Product in R3

For R3 with the euclidean metric the interior products has a simple computational rule. The

interior product of a di�erential dx and a term of an arbitrary form containing dx as a factor

Warnick, et al. 13 March 21, 1995



is found by moving dx to the left of the term, switching the sign of the term each time two

di�erentials are interchanged, and then removing the di�erential dx from the term. If dx is

not present in the term, the interior product is zero. For example,

3 dx ( dz ^ dx+ 2 dy ^ dz) = 3 dx dz ^ dx+ 6 dx dy ^ dz

= �3 dx dx ^ dz + 0 (31)

= �3 dz:

This rule can be used to obtain the interior product of a 1-form and an arbitrary p-form.

As noted above, the interior product of two 1-forms is their inner product,

(a1 dx+ a2 dy + a3 dz) (b1 dx+ b2 dy + b3 dz) = a1b1 + a2b2 + a3b3; (32)

The interior product of a 1-form and a 2-form is

(a1 dx + a2 dy + a3 dz) (b1 dy dz + b2 dz dx + b3 dx dy) =

(a3b2 � a2b3) dx + (a1b3 � a3b1) dy + (a2b1 � a1b2) dz (33)

which compares to the cross product of vectors with the same components. The exterior

product of two 1-forms, the interior product of a 1-form and a 2-form and the vector cross

product result in the same coe�cients. The exterior product of a 1-form and a 2-form, the

interior product of two 1-forms and the vector inner product result in the same coe�cient.

With this identi�cation of operations on forms with vector operations, the rule (30) for R3

contains several vector identites as special cases.

A.3 Examples of the Use of the Interior Product

The vector Lorentz force law is

F = q(E+ v�B) (34)

where v is the velocity of the charge q. Written using di�erential forms, this law becomes

F = q(E � v B) (35)

where F is the force �eld 1-form. The vector current density is given by

J = vq (36)
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where v is the velocity �eld of a volume charge distribution with scalar density q. Writing

the same charge distribution as the 3-form �, this becomes

J = v �: (37)

If � = q dx dy dz and the 
ow �eld v = vx̂, for example, then J = vx̂ q dx dy dz = vq dy dz.

A.4 Twisted Forms

This appendix is intended only to provide background in the mathematics of twisted forms

for the interested reader. In practice, we agree to use only right-handed coordinates, and the

distinction between twisted and nontwisted forms disappears. One can switch between outer

and inner orientations at will, using whichever is more appropriate to the quantity at hand.

The use of twisted forms in EM theory therefore does not complicate calculations; rather,

twisted forms become a graphical tool, adding signi�cantly to the intuition obtainable from

pictures of boundary conditions.

A twisted form changes sign under a re
ection of the coordinate system relative to a

nontwisted form with the same components. Other terms for twisted tensors are oriented,

Weyl or odd. Axial vectors or pseudovectors are dual to twisted 1-forms and nontwisted

2-forms in R3; polar vectors are dual to nontwisted 1-forms and twisted 2-forms.

Graphically, each di�erential form is represented by surfaces in space. There are two

possible orientations for each set of surfaces, and so an orientation must be speci�ed in

addition to the surfaces. A nontwisted form has an inner orientation, so that each of its

surfaces has a perpendicular direction associated with it. The nontwisted 1-form dx has

inner orientation in the +x direction; the 2-form dy dz obtains a screw sense from the inner

orientations of dy and dz.

A twisted p-form is given an outer orientation rather than an inner orientation. Graph-

ically, an outer orientation for a form � is the orientation of a form consisting of surfaces

orthogonal to the surfaces of �. In Burke's [6] notation, a twisted form is written as a pair

(�;
) of a nontwisted form � and volume element (n-form) 
. If the twisted form � has

degree p, its outer orientation f(�;
)g is an (n� p)-form and is given by

f(�;
)g ^ � = 
 (38)
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Under coordinate re
ection, the volume element changes sign, so that outer orientations also

must change sign relative to inner orientations. Note that the sign change is relative; under

re
ection, the orientation of a nontwisted form may reverse while the corresponding twisted

form retains its original orientation. This is the case for 2-forms in R3.

Fig. 4a shows the nontwisted 1-form dx+ 2 dy with inner orientation given by an arrow.

Fig. 4b shows the twisted form dx + 2 dy in R2. Its outer orientation with respect to


 = dx dy is provided by the 1-form 1
5
(2 dx� dy), which has orientation in the direction of

the arrow in Fig. 4b. Under coordinate re
ection, the orientation of a twisted form reverses

with respect to the orientation of the nontwisted form with the same components, as shown

in the �gure.

Under pullback or restriction to a subspace, the outer orientation1 f(�s;
s)g of the twisted
form f(�;
)g restricted to a subspace with outer orientation n,

f(�s ;
s)g ^ n = f(�;
)g (39)

where �s is the restriction of the form � to a subspace and 
s is a volume element in

the subspace. The 1-form n = dfq
df df

used in the preceeding sections serves as the outer

orientation for the boundary f = 0, so that Eq. (39) and the de�nition (38) lead to the

convention (10).

Twisted forms are the natural mathematical object to represent sources. Consider, for

example, a surface current in the +x direction along the x � y plane. The usual vector Js

for this current is J0x̂. The nontwisted 1-form J0 dx dual to J0x̂ has inner orientation in

the +x direction, but does not integrate over a path to yield the correct current through

the path|the current through the y-axis from y = 0 to y = 1, for example, is J0, but the

integral of J0 dx over that path is zero. The nontwisted 1-form J0 dy integrates properly to

yield current through a path, but has inner orientation in the +y direction. The twisted

1-form (J0 dy; dx dy) by (38) has outer orientation dx, which is the direction of current 
ow,

and integrates to yield the correct current through an arbitrary path as well.

Twisted 2-forms are similarly useful for representing surface charge. Each cell of a non-

twisted 2-form in two-space has a screw sense as inner orientation, whereas each cell of a

twisted 2-form has a sign as its outer orientation (Fig. 5).
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We represent surface current and surface charge density with twisted forms because of

the graphical convenience of having orientation of forms correspond to actual direction of


ow of current or sign of the charge. To be precise, H and D must be twisted forms also.

For clarity's sake, we ignore this in the body of the paper, since as mentioned above one

can employ inner and outer orientations interchangeably if only right-handed coordinates

are used. It is interesting to note that when properly formulated using both twisted and

nontwisted forms as in [5], the 3 + 1 representation of electromagnetic �eld theory becomes

explicitly parity invariant|no right-hand rule is required.
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Footnotes

1. This de�nition for the orientation of the restriction of a form to a boundary, or

pullback to the boundary, corresponds with the expected orientations of EM boundary con-

ditions. For pullback to commute with exterior di�erentiation, however, the convention

n ^ f(�s;
s)g = f(�;
)g found in Burke, [6] must be used instead of Eq. (39) (Burke,

W. L., Private communication, Feb. 1995). This convention could be employed here if the

surface normal 1-form were oriented from D1 to D2 as before but from H2 to H1. In fact,

applying the continuity equation for surface charge and the commutation of pullback with

exterior di�erentiation to Burke's boundary conditions using pullback, one can show that

the pullback functions for H must di�er from those for D by a sign. We prefer to leave

the boundary conditions simple at the expense of some required caution when using our

de�nition of pullback more generally.
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Fig. 1. (a) A boundary with discontinuous magnetic �eld. (b) The �eld (H2 � H1). (c)

The 1-form n (n ^ (H2 � H1)). (d) The restriction of this 1-form to the boundary, along

with the corresponding vector Js.

Fig. 2. (a) A boundary with discontinuous electric 
ux. (b) The �eld (D2 �D1). (c) The

2-form n (n ^ (D2 �D1)). (d) The restriction of this 2-form to the boundary.

Fig. 3. (a) The boundary � cos y + z = 0 with magnetic �eld H2 = H dx above the

boundary. The �eld is zero below the boundary. (b) The 1-form H dx in 3-space. (c) The

1-form H dx restricted to the boundary.

Fig. 4. (a) The behavior of the nontwisted 1-form dx+2 dy in the plane under a coordinate

transform. (b) The behavior of the twisted 1-form dx + 2 dy under the same transform.

The orientations of the untransformed forms are related by the right-hand rule. Since the

coordinate transform changes the handedness of the coordinate system, the orientations of

the transformed forms are related by the left-hand rule, and so the orientation of the twisted

form reverses.

Fig. 5. (a) The inner orientation of a nontwisted 2-form � in two-space, speci�ed by a

screw sense for each box. (b) The outer orientation of a twisted 2-form (�;
) in two-space

is a sign for each box.
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Fig. 1.

Fig. 2.

Fig. 3.
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Fig. 4.

Fig. 5.
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