Problem 9.3 Determine the (a) direction of maximum radiation, (b) directivity, (c) beam solid angle, and (d) half-power beamwidth in the $x-z$ plane for an antenna whose normalized radiation intensity is given by

$$
F(\theta, \phi)= \begin{cases}1, & \text { for } 0 \leq \theta \leq 60^{\circ} \text { and } 0 \leq \phi \leq 2 \pi \\ 0, & \text { elsewhere }\end{cases}
$$

Suggestion: Sketch the pattern prior to calculating the desired quantities.
Solution: The direction of maximum radiation is a circular cone 120° wide centered around the $+\hat{\mathbf{z}}$-axis. From Eq. (9.23),

$$
\begin{aligned}
D & =\frac{4 \pi}{\iint_{4 \pi} F d \Omega}=\frac{4 \pi}{\int_{0}^{2 \pi} \int_{0}^{60^{\circ}} \sin \theta d \theta d \phi}=\frac{4 \pi}{\left.2 \pi(-\cos \theta)\right|_{0^{\circ}} ^{60^{\circ}}}=\frac{2}{-\frac{1}{2}+1}=4=6 \mathrm{~dB} \\
\Omega_{\mathrm{p}} & =\frac{4 \pi \mathrm{sr}}{D}=\frac{4 \pi \mathrm{sr}}{4}=\pi \quad(\mathrm{sr})
\end{aligned}
$$

The half power beamwidth is $\beta=120^{\circ}$.

