Problem 9.16 Repeat parts (a)-(c) of Problem 9.14 for a dipole of length $l=\lambda$.
Solution: For $l=\lambda$, Eq. (9.56) becomes

$$
S(\theta)=\frac{15 I_{0}^{2}}{\pi R^{2}}\left[\frac{\cos (\pi \cos \theta)-\cos (\pi)}{\sin \theta}\right]^{2}=\frac{15 I_{0}^{2}}{\pi R^{2}}\left[\frac{\cos (\pi \cos \theta)+1}{\sin \theta}\right]^{2}
$$

Solving for the directions of maximum radiation numerically yields

Figure P9.16: Radiation pattern of dipole of length $l=\lambda$.

$$
\theta_{\max _{1}}=90^{\circ}, \quad \theta_{\max _{2}}=270^{\circ}
$$

(b) From the numerical results, it was found that $S(\theta)=15 I_{0}^{2} /\left(\pi R^{2}\right)(4)$ at $\theta_{\max }$. Thus,

$$
S_{\max }=\frac{60 I_{0}^{2}}{\pi R^{2}}
$$

(c) The normalized radiation pattern is given by Eq. (9.13), as

$$
F(\theta)=\frac{S(\theta)}{S_{\max }}
$$

Using the expression for $S(\theta)$ from part (a) with the value of $S_{\text {max }}$ found in part (b),

$$
F(\theta)=\frac{1}{4}\left[\frac{\cos (\pi \cos \theta)+1}{\sin \theta}\right]^{2} .
$$

The normalized radiation pattern is shown in Fig. P9.16.

