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Abstract

The calculus of differential forms clarifies the rela-
tionship between field intensity and flux density and
provides intuitive pictures of Ampere’s and Faraday’s
laws, the curl operation, the Poynting vector, and
boundary conditions. These and other advantages over
vector analysis make differential forms an optimal tool
for teaching electromagnetics.

I. Introduction

There are several areas of electromagnetic field the-
ory which nearly every student finds difficult. Stu-
dents often wonder, for example, why two vectors are
required to represent a single field, or are unable to
visualize the curl operation. These areas of difficulty
are not fundamentally more complicated than other
principles of electromagnetics, but are made obscure
by the language used to express EM theory, vector
analysis. There is another language for tcaching clec-
tromagnetics which makes these concepts clearer and
more intuitive: the calculus of differential forms.

Differential forms clarify the relationship between
field intensity and flux density and provide intuitive
pictures of Ampere’s and Faraday’s laws, the curl op-
eration, the Poynting vector, and boundary conditions.
While we have chosen to focus this paper on the visual
advantages of differential forms, the notation also elim-
inates much of the memorization of identities, deriva-
tive formulas, and theorems required for students to
compute using vector analysis. Deschamps [1] was
among the first to suggest the use of differential forms
as a teaching tool in engineering; Burke [2] is an active
advocate in the physics community. Our own class-
room experience not only supports but has helped us
to refine the points we hope to make in this paper,
that the calculus of differential forms makes electro-
magnetic field theory easier for students to visualize,
understand, and apply.

II. Field Intensity and Flux Density

Associated with the electric field intensity vector E
is the flux density vector D = ¢E. Graphically, D does
not add to a student’s understanding of the nature of
the electric field, since the vectors differ only by a scale
factor. One might justify the existence of the extra D

vector by noting that E and D are not parallel in an
anisotropic media, but there is a more fundamental
reason than this.

In the commonly used alternative graphical repre-
sentation of a vector field, the spacing between lines,
rather than their length, represents the strength of a
field. This picture, which has long been used to illu-
minate flux density, is not really a picture of a vec-
tor field—it is the picture of a differential form. The
two picturcs uscd to represent different types of vec-
tor fields hint at the true natures of field intensity and
flux density. After introducing differential forms and
the exterior product, we show that field intensity and
flux density become differential forms of different de-
grees.

Differential Forms; Exterior Product

The calculus of differential forms is the calculus of
quantities that can be integrated. The degree of a
form is the dimension of the region over which it is
integrated, so that in R3 there are 0-forms, 1-forms,
2-forms and 3-forms.
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Figure 1. (a) The 1-form dz. (b) The 2-form dx dy.
Tubes in the z direction are formed by the super-
position of the surfaces of dx and the surfaces of
dy. (c) The 3-form dz dydz, with three sets of
surfaces that create bozes.

1-forms are integrated over paths, and are repre-
sented graphically by surfaces [3], as in Fig. 1la. The
surfaces of dx, for example, are perpendicular to
the ¢ axis, infinite in the y and z directions, and
spaced a unit distance apart. The general 1-form is
E, dz+E; dy+FE3 dz, with dual vector Eyi+FEoj+E32.



2-forms are integrated over surfaces. The general 2-
form is Dy dy A dz+ D3 dz A dw+ D3 dw A dy, with dual
vector D1& + Doy + D32. The wedge represents the
exterior product, which is anticommutative, so that
dz A dy = —dy A dz and dx A dz = 0. Wedges are
often dropped for compactness. Graphically, 2-forms
are tubes (Fig. 1b). The greater the coefficients of
2-form, the narrower and more dense the tubes.

A 3-form pdz A dy A dz is a volume element, repre-
sented by boxes (Fig. 1c). The greater the magnitude
of a 3-form’s coefficient, the smaller and more closely
spaced are the boxes. Finally, a 0-form is a function.
Forms of degree greater than three vanish by the an-
ticommutativity of the exterior product.

Because field intensities are always integrated over
paths, the electric and magnetic field intensities be-
come 1-forms, denoted by E and H. Since flux quanti-
ties are integrated over surfaces, the electric and mag-
netic flux densities D and B are 2-forms. Graphically,
the 1-form E shows that the electric field assigns po-
tential difference to a path. Each surface of E crossed
by a path represents an increase or decrease in po-
tential. This viewpoint on the electric field is already
familiar; differential forms simply provide the mathec-
matical framework. The 2-form D illustrates the re-
lationship of the electric field to sources: tubes of D
represent flux from positive to negative charges. The
physical nature of these quantities is now encoded in
the mathematical objects themselves, rather than in
the choices of operators and integrals that act on them.
The importance of the graphical representations for 1-
forms and 2-forms will become more apparent when
we show in the next section how forms allow Maxwell’s
laws to be visualized.

ITI. Maxwell’s Laws

Consider the simplest example to which Ampere’s
law is applied, that of an infinite line current. The
vector picture, shown in Fig. 2a, is often used as the
fundamental example of a field with curl. The obvious
question which many students encounter is, “why does
the field appear to curl away from the wire?” With
vectors, an imaginary “paddle wheel” must be placed
in the field and an argument given as to why the wheel
does not rotate. There is a much better way than Fig.
2a to visualize curl. In fact, as we will show, Ampere’s
law and the curl become so intuitive using differential
forms that these concepts can be introduced to stu-
dents first and used to motivate Gauss’s law and the
divergence.
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Figure 2. (a) Magnetic field intensity due to an infi-
nite line current. (b) Ampere’s law using forms:
tubes of current produce magnetic field surfaces.

Maxwell’s Laws Using Forms

Faraday’s and Ampere’s laws written using differen-
tial forms are

ﬁE:-—/A%B, ﬁH:A(%D+J) (1)

where P is a closed path, A is a surface bounded by
P, and J is the electric current density 2-form.

Integration of forms has a simple graphical inter-
pretation. Neglecting the obvious complications due
to the orientations of differential forms and regions of
integration, the integral of a 1-form over a path is sim-
ply the number of surfaces pierced by the path. The
integral of a 2-form over a surface is the number of
tubes passing through the surface. The integral of a
3-form over a volume is the number of boxes inside the
volume.

Graphically, Ampere’s law states that the number of
tubes of displacement current %D and electric current
J passing through a closed loop is equal to the num-
ber of surfaces of the magnetic field intensity 1-form
pierced by the loop. Thus, tubes of current produce
magnetic field surfaces, as illustrated in Fig. 2b.

A 1-form has nonzero curl at locations where dif-
ferent surfaces meet. While Fig. 2a is confusing to
students because the vector field seems to rotate away
from the current source, Fig. 2b shows clearly that sur-
faces converge only along the tubes of current, so that
the field has a curl only at the source.

Figure 8. Gauss’s law: bozes of electric charge produce
tubes of electric fluz.



Not only do forms clarify Ampere’s and Faraday’s
laws, but they also elucidate the close connection be-
tween this pair of laws and Gauss’s laws for the electric
and magnetics fields. We write using forms,
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where S is a closed surface, V is the interior of S, and p
is the electric charge density 3-form. Graphically, the
first of these laws shows that boxes of electric charge
density produce tubes of electric flux density (Fig. 3).
A cross section of this picture is the usual “flux” rep-
resentation of the field, in which spacing between lines
gives the strength of the field. Gauss’s law for the mag-
netic field shows that tubes of magnetic flux density
never end.

The concept of curl is usually much more difficult
for students to grasp than that of divergence. A com-
parison of Figs. 2b and 3 shows that with differential
forms Ampere’s and Faraday’s laws become as intu-
itive as Gauss’s laws. Not only are both pairs of laws
equally easy to visualize, but the conceptual unity be-
tween them is revealed.

IV. Energy and Power

The Poynting vector S = E x H represents flow of
power rather than intensity of a field. It is a different
type of quantity than E or H, just as D and E are
different, and yet all these quantities have the same
mathematical representation as vectors. Although it
is clear from the definition that S is perpendicular to
E and H, the vector picture in Fig. 4a does not pro-
vide any intuition as to the relationship between the
directions of E, H, and S. Expressing these quantities
as differential forms provides added insight.

Power Flow
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Figure 4. (a) The Poynting vector S = E x H. (b)
The surfaces of the 1-forms F and H form the
sides of the tubes of the Poynting power flow 2-
form S=EAH.

As Fig. 4b shows, the surfaccs of the 1-forms E and
H form the sides of the tubes of the Poynting 2-form
S. Power flows along these tubes. This gives a clear
geometrical interpretation of the fact that the direction

of power flow is orthogonal to both E and H. In a
similar way, the surfaces of E and H join with the
tubes of D and B to form boxes of the energy density
3-formw=(EAD+ HAB).

V. Boundary Conditions

Consider the usual vector representation of the
boundary condition on the magnetic field, fi x (H; —
H,). The expressions for this and the other boundary
conditions are easy to apply, but Fig. 5 has no clear
physical interpretation. Differential forms provide a
more appealing picture of boundary conditions.
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Figure 5. Surface current density J, on a boundary
with Hy = ¢ above and Hy = 0 below.

A. The Interior Product

The interior product of 1-forms is defined (in rectan-
gular coordinates) by dzldr = dyldy = dzldz=1.
Other combinations, such as dz.dy, yield zero. For
1-forms and 2-forms,

dzl(dz A dz) = —dyl(dzx A dy) = dx
drl(dz A dy) = —dz)(dy A dz) = dy
dyl(dy A dz) = —dzJ(dz A dz) = dz

and dzJ(dyA dz) = dyl(dz A dz) = dzd(dz A dy) =
0. Graphically, the interior product removes the sur-
faces of the form on the right of the product from those
of the form on the left.

B. Boundary Conditions Using Forms

Boundary conditions on the electromagnetic field
can be written using the operator ninA, where n is
the 1-form f;dz + f,dy + f.dz normalized so that
nin = 1 and f is a function that vanishes along a
boundary. As proved in [4],

nl(nA[Ei—Eg]) = 0
nl(nA[Hy—Hy|) = J;
nl(nA[Dy—D3]) = ps
nl(nA[B1—Bs]) = 0

where subscripts represent values above (f > 0) and
below (f < 0) the boundary, J, is the surface current
density 1-form, and p, is the surface charge density 2-
form. All the expressions use the same operator ninA.



The physical difference between field intensity and flux
density boundary conditions is no longer contained in
the choice of cross product versus dot product, but
in the degrees of the forms used to represent the field
quantities.

These expressions for boundary conditions have a
simple geometric interpretation. The discontinuity
H, — H,, for example, is a 1-form with surfaces that
intersect the boundary along the lines of the 1-form J,
(Fig. 6a). From the fields above and below a bound-
ary one knows immediately what sources lie on the
boundary.

In the expression for J,, the exterior product n A
(Hy — H>) creates tubes with sides perpendicular to
the boundary (Fig. 6b). The interior product nJ(n A
[H: — H,)) removes the surfaces parallel to the bound-
ary that were added by the exterior product, as shown
in Fig. 6¢c. The total effect of the operator n.nA is to
select the component of H; — H, with surfaces perpen-
dicular to the boundary.

Figure 6. (a) The field discontinuity H; — Ha, which
has the same intersection with the boundary as
Js. (b) The exterior product n A [Hy — Ha) yields
tubes with sides perpendicular to the boundary.
(c) The interior product with n removes the sur-
faces parallel to the boundary, leaving surfaces
that intersect the boundary along the lines rep-
resenting the I1-form Js.

The 1-form J, is natural both mathematically and
geometrically as a representation of surface current
density. The expression for current through a path
P is
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where 7 is a surface normal and § is tangent to the
path. This simplifies to
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in terms of the 1-form J,. We will not discuss in de-
tail the remaining boundary conditions, but they have
similar advantages over their vector counterparts.

VI. Conclusion

There are other areas of electromagnetics that are
streamlined and clarified by the use of forms. We have
not discussed the exterior derivative, which replaces
the gradient, curl, and divergence operators and re-
quires no memorization or table of formulas for use
in curvilinear coordinates, nor the generalized Stokes’
theorem, which is a single, simple relationship hav-
ing the fundamental theorem of calculus, the vector
Stokes theorem, and the divergence theorem as spe-
cial cases. Nearly all of the common identities and
formulas of vector analysis are replaced by algebraic
rules that are easy for students to remember. The
references, especially [5], provide more comprehensive
treatments. Differential forms simplify more advanced
applications, such as Green functions [6]. Ease of com-
putation and clarity of expressions will likely extend
to future applications of differential forms in applied
EM theory.

In 1992, we began inserting short segments on dif-
ferential forms into beginning, intermediate, and grad-
uate EM course. Since the Fall semester of 1995, we
have shifted entirely to differential forms in the be-
ginning course. Student evaluations have been nearly
unanimously positive. The most common response has
been that pictures of forms help students understand
electromagnetics. Ideally, preparatory calculus and
physics courses would also employ differential forms.
The simple correspondence between forms and vectors
allows forms to be taught with little loss in under-
standing of materials using traditional methods.

There are other formalisms for electromagnetics:
bivectors, tensors, quaternions, spinors, higher Clif-
ford algebras, and so on. None of these offer as opti-
mal a combination of clear relationship to traditional
vector analysis, ease of presentation, concreteness, and
intuitive graphical representation as differential forms.
In light of the simple relationship between differential
forms and vectors, establishing the calculus of differen-
tial forms as the primary language for electromagnetics
would not only be desirable but feasible as well.
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