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for FDTD: Time and Space Parallelism
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Abstract— In this paper, we present a novel strategy for
incorporating massive parallelism into the solution of Maxwell’s
equations using finite-difference time-domain methods. In a de-
parture from previous techniques wherein spatial parallelism is
used, our approach exploits massive temporal parallelism by
computing ail of the time steps in parallel. Furthermore, in
contrast to other methods which appear to concentrate on explicit
schemes such as Yee’s algorithm, our strategy uses the implicit
Crank-Nicolson technique which provides superior numerical
properties. We show that the use of temporal parallelism results
in algorithms which offer a massive degree of coarse grain
parallelism with minimum communication and synchronization
requirements. Due to these features, the time-parallel algorithms
are particularly suitable for implementation on emerging mas-
sively parallel multiple instruction-multiple data (MIMD) archi-
tectures. The methodology is applied to a circular cylindrical
configuration, which serves as a testbed problem for the ap-
proach, to demonstrate the massive parallelism that can be
exploited. We also discuss the generalization of the methodology
for more complex problems.

1. INTRODUCTION

HE application of finite-difference and finite-volume
time-domain (FDTD and FVTD) methods to the solution

of Maxwell’s equations has been encouraged by increased
efforts to model electrically large and complex radiators and
scatterers. Because of the intensive computation and storage
requirements associated with these techniques, however, their
practical implementation for very large problems presents
some challenges. In a recent survey of computational
electromagnetic (CEM) techniques [1], it is suggested that
a key solution to the computational power and storage
requirement bottlenecks is the exploitation of a massive degree
of parallelism by implementing CEM FDTD algorithms on
parallel architectures. To fully exploit the computing power
offered by available parallel platforms, however, existing
algorithms must be reexamined with a focus on their efficiency
for parallel implementation. Eventually, new algorithms may
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have to be developed that, from the onset, take a greater
advantage of the available massive parallelism.

An emerging class of massively parallel multiple
instruction-multiple data (MIMD) supercomputers, such
as Intel’s Delta and Paragon and CRAY’s T3D, appears
to set the current and future trend in massively parallel
computing technology. The very large number of vector
processors employed in these supercomputers couples
the high level, coarse grain parallelism of the MIMD
architecture with a lower level vector processing capability
to provide an impressive computational throughput. The
main limitation of these architectures lies in their rather
limited communication structure. This feature makes them
most suitable for algorithms which possess a high degree of
coarse grain parallelism, require limited communication and
synchronization, and involve basic operations or algorithmic
processes that can be efficiently vectorized. The algorithms
presented in this paper have been developed based upon this
model of computation and, as such, are highly efficient for
implementation on this class of massively parallel MIMD
supercomputers.

A number of finite-difference schemes have been developed
and used to solve Maxwell’s time-domain coupled partial
differential equations (PDE’s) [2]-[5]. The majority of these
techniques are explicit and require a sparse matrix-vector
multiplication at each time step. The high degree of spatial
parallelism—the exploitation of parallelism at each time step,
suggested by these schemes has motivated considerable recent
work on space-parallel FDTD implementations. This paral-
lelism, however, is rather fine grain and, due to communication
and synchronization requirements, it cannot be efficiently
exploited by massively parallel MIMD architectures. In fact,
practical implementations of one widely used technique, com-
monly referred to as Yee’s algorithm [2], on computers such
as the Hypercube [6], [7] and Transputer [8] clearly show that
computational speed-up is limited since only a few processors
can be efficiently employed. In contrast, as suggested in [4]
and [5], these methods are highly suitable for vector processing
and as such may be efficiently computed using a high degree
of vectorization but a limited degree of parallelism.

In this paper, we propose a novel computational strategy
which uses time-parallelism, the exploitation of parallelism in
the computation of all the time steps, in the finite-difference
solution of the scalar wave equation. In a clear departure from
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typical FDTD methods, the technique uses a fully implicit
Crank—Nicolson (CN) discretization [9] and therefore offers
the benefits of unconditional stability. This feature often allows
a reduction in the number of time steps required to complete
the simulation. The resulting time-parailel algorithm offers a
high degree of coarse grain parallelism with minimum commu-
nication and synchronization requirements, making it highly
efficient for implementation on massively parallel MIMD
architectures. The application of our time-parallel computing
approach to determine the electromagnetic behavior of fields
near circular cylindrical geometries clearly reveals the massive
temporal parallelism which can be efficiently exploited in the
computation. It is further shown that with the availability of
a larger number of processors spatial parallelism can be also
exploited in the computation, resulting in a time- and space-
parallel algorithm which remains highly coarse grain with a
simple communication structure.

The paper is organized as follows. Section Il reviews
some fundamental ideas relating to the parallel solution of
time-dependent PDE’s and introduces the underlying concepts
behind time-paralle] computation. In Section 111, the algorithm
is applied to the circular cylinder. The performance of the
time-parallel algorithm with respect to the best sequential
explicit and implicit methods for the same cylinder problem
is analyzed in Section IV. Generalization of the time-parallel
computing approach is discussed in Section V. Finally, Section
VI provides some concluding remarks.

II. TIME-PARALLEL ALGORITHM FOR FDTD CEM

A. Parallel Solution of Time-Dependent PDE’s

Maxwell’s time-dependent coupled PDE’s form the compu-
tational basis for the time-parallel algorithm implementation.
For homogeneous, isotropic materials, these equations can be
written as two decoupled second-order wave equations which
assume the form

-
——aaf =*V?E
o H -
= =c*V2H (N

where c is the speed of light and E and H represent the electric
and magnetic field intensities, respectively. Depending on the
problem geometry, a set of scalar hyperbolic equations can
be selected from (1). These equations can be expressed in a
general form as

O*Y(7.t)
2
where € is a bounded domain with boundary Q" and g(,t)
indicates a time- and space-dependent source term. Using
finite-difference approximations for the derivatives results in
a general discretized form of (2) which may be written in a
matrix form as

A = Apt™ 4 Agy(™ 4 fD (3

for 1 < m < M —1 where ¥(™ is a column vector
representing the approximate solution at the mth time step,

= V() + g(Ft)  TEQOE<T (2
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At is the time step size, and M = T/At. The term flmt)
results from the discretization of g(7,t) in time and space,
and ¢(©) and (1) are the given initial conditions. The specific
structure of the matrices A, Az, and Az and the computation
of f(m+D depend upon the solution method as well as the
time and space discretization strategies employed.

Although most of the current research on developing parallel
techniques for solution of time-dependent PDE’s appears to
concentrate on parabolic equations, some of the techniques
developed can be extended to the solution of hyperbolic
equations. Recent trends in this arena seem to be motivated
by three widely acknowledged observations [10}-[12]:

1) Explicit methods, while limited in their range of sta-
bility, are highly efficient for parallel and/or vector
processing since the computation at each time step
mainly involves a matrix-vector multiplication. This has
motivated the development of new explicit methods
which offer improved numerical properties while pre-
serving the efficiency for parallel/vector computation
[13], [14].

2) Implicit algorithms, despite their superior numerical
properties, are not efficient for parallel and/or vector pro-
cessing since at each time step a linear system solution
is required. This has motivated new implicit techniques
which improve the efficiency for space-parallel compu-
tation [11], [15].

3) The implementation of time-stepping methods is gener-
ally assumed to be strictly sequential in time, implying
that the solution for time step m + 1 cannot be obtained
without first computing the solution for step m. This has
motivated the investigation of new iterative techniques
to increase parallelism in time [16]-[18]. The resulting
algorithms are limited to parabolic equations, however,
and achieve a rather limited temporal parallelism. In fact,
it has been implied that simultaneous solution for all
time steps is not feasible [16], [19].

In contrast, we have recently shown that by departing from
these governing assumptions, it is possible to efficiently solve
implicit time-stepping methods in a fully time-parallel fashion
[201, [21]. In fact, the practical application of such a time-
parallel aigorithm to a simple two-dimensional heat problem
on Intel’s Touchstone Delta has shown that linear and even
super-linear speed-up can be achieved by using a very large
number of processors (of the order of 10%) [22]. In the
following, we discuss the implementation of the time-parallel
algorithm to the CN solution of (2).

B. Temporal Parallelism

It is noteworthy that (3) simply represents a second-order
inhomogeneous linear recursion (SOILR) which can be cast
into a first-order one. The concept of temporal parallelism is
to solve this recurrence in parallel using the recursive dou-
bling algorithm (RDA) or cyclic reduction algorithm (CRA)
[23]. Unfortunately, such an approach is not computationally
practical, since both RDA and CRA compute powers and
products of the matrices in (3) result in increasingly dense
and ultimately full matrices. In such an event, the cost of
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one full matrix—-matrix multiplication alone would be much
greater than the cost of any serial algorithm. Nevertheless,
this observation clearly indicates that, insofar as the data
dependency in the computation is concerned, the time-stepping
procedure in (3) can be fully parallelized in time.

Motivated by this observation, we have developed a
technique which allows efficient time-parallelization of time-
stepping procedures, leading to a highly practical approach
for massively parallel computation. To describe this technique,
consider the CN method for solution of (2). As shown in the
Appendix, (3) may be written as

(I=ad)pm+h) = 21y — (- a Ay =D + fm+D) (@)

for 1 <m < M —1 where I is the unit matrix, ¢ is a constant,
and A is the matrix arising from the discretization of the
Laplace operator. The vector f(™*1) contains any source or
otherwise known field values in the spatial domain. Now,
let the Eigenvalue/Eigenvector (EE) decomposition of the
nonsingular matrix A be given by

A=646"" N )

where O is the set of eigenvectors and A is a diagonal matrix
representing the set of eigenvalues of A. Substituting (5) into
(4) and taking @ and @71 outside the parentheses gives the
expression

6(I — aA)e~1yp(m+D)
=209 — O(I — a )8~ typ(m=1) 4 fimtl) ()

Muttiplying both sides of (6) by the nonsingular matrix 67!,
we obtain

(I - aA)@~ 1p(m+D)
=2I6714(™) (I — ad)@~1yp(m—1) . @ 1 f(m+1)
: (M

Defining a diagonal matrix § = (I — aA)™! and the vectors
Y™ = @~ 14(™ and F(™) = §671 (™) allows us to write
(7) as

d(nl-ﬁ-l) - Zs,l/;('m) _ dy('m-l) + f('ru-‘f-l). (8)

In contrast to (4), (8) is diagonal and can therefore efficiently
be solved in parallel using RDA or CRA. For example, for
two- and three-dimensional problems (spatial grids of N x N
and N x N x N nodes, respectively), (8) can be computed in
O(N?log M) and O(N?3log M) by using O(M) processors.

C. Structure of the Time-Parallel Algorithm

To facilitate the discussion of the algorithm, we subdivide
it into four steps as illustrated in Fig. 1. Step 1 involves deter-
mining the EE decomposition of the matrix A and forming
the matrix S. The source vectors f(™) are computed and
multiplied by S&~! in Step 2 to obtain the vectors f(’").
The parallel solution of the SOILR in (8) is accomplished in
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Step 1
A = ©OAO™!
S=(I-aA)!
f(2) el
@ —dg@-t f _. »(d

) if‘”’ SOILR |# i )
m) ] L ()
s M Solution n k4

. N N .
Fon )
o o

Step 4

Step 2 Step 3

Fig. 1. Flow diagram illustrating the computational structure of the
time-parallel algorithm.

Step 3. Finally, the solution vectors (™) are obtained in Step
4 by performing the matrix-vector multiplication 6¢(™).

Several key issues relating to these steps must be addressed
before applying the approach to an example problem. To
begin, it is important that the computation in Step 1 typically
only generates © and A, and therefore the matrix 6~ must
be explicitly computed. This is simply performed if A is
symmetric since @' = T (where T indicates transpose). If
A is nonsymmetric, the fact that AT = (6~1)T A7 suggests
that the EE decomposition of AT will yield @*. This can be
performed in parallel with the EE decomposition of A without
increasing the overall computational complexity. Because the
computation in Step 1 is space dependent, it needs to be
performed only once for a given problem geometry.

The transformations in both Steps 2 and 4 are completely
decoupled and can be performed in parallel using O(M)
processors with no interprocessor communication. The com-
munication required in the computation of Step 3 has a rather
simple structure and can be efficiently implemented on MIMD
parallel architectures since it involves the exchange of large
vectors among processors. For practical temporal and spatial
grid sizes, the computational cost of Step 3 is much less
than that of Steps 2 and 4. This implies that the overall
complexity of the time-parallel algorithm is dominated by the
computations of Steps 2 and 4 which can be fully parallelized
in time. This also illustrates the highly decoupled structure,
coarse grain size, and vector nature of the scheme.

These features of the time-parallel algorithm have motivated
us to identify the class of problems to which the scheme may
be efficiently applied. Two key requirements for the efficient
application of the method are:

1) an efficient scheme for determination of the eigenpairs
of A,

2) an efficient scheme for the matrix-vector multiplications
in Steps 2 and 4.

The first issue motivates us to seek problems which exploit
a high degree of parallelism in the EE decomposition of A.
The second issue is particularly important since multiplication
of a dense matrix by a vector leads to excessively high
computational costs. This fact motivates us to exploit the
sparse structure of A and to express € and 6" as products of
highly sparse matrices to reduce the complexity of these steps.




The implications of these two issues will be clarified through
application of the algorithm to a representative problem.

D. Absorbing Boundary Condition

For many problems, particularly enclosed problems involv-
ing resonant cavities or wave-guiding structures, the time-
parallel algorithm may be readily applied since typically either
a Dirichlet or Neumann condition is enforced on the outer
spatial domain boundary. For open problems encountered in
radiation and scattering, however, the issue of incorporating an
absorbing boundary condition (ABC) [24] at the outer domain
boundary must be addressed. This ABC is a computational grid
termination which allows waves to exit the domain without
undergoing artificial reflections at the grid boundary. For the
time-parallel algorithm, proper choice of an ABC is of critical
importance. This arises from the fact that the derivation of
the scheme depends upon the fundamental assumption that
all matrices in (3) and (4) are simultaneously diagonalizable.
While this assumption holds for conventional boundary con-
ditions (i.e., Dirichlet, Neumann, Mixed, and Periodic), it is
not necessarily valid for all existing forms of ABC’s.

In light of this fact, additional research is under way to iden-
tify improved techniques for including nonreflecting boundary
conditions within the framework of the time-parallel algorithm.
One potential ABC involves solving the problem once for
a Dirichlet and once for a Neumann boundary condition
at the outer domain boundary [24] and then averaging the
results to give the desired solution {24], [25]. This scheme not
only maintains the diagonalizability of (4) but also is highly
suitable for parallel computation since the two solutions can be
performed in parallel. Our investigation, however, has shown
that this ABC suffers from inaccuracies when the temporal
duration is long enough for multiple reflections to occur. A
second possible strategy which we have developed makes use
of a time- and space-parallel solution of (2) using a first order
ABC [24]). This procedure has recently been presented by the
authors [26].

III. ALGORITHM IMPLEMENTATION
FOR A CIRCULAR CYLINDER

Although the high-level structure of the time-parallel al-
gorithm as outlined in Section II-C is the same for various
applications, some of the details of the implementation may
change from problem to problem. In this section, we illustrate
the method by applying it to the CN solution of Maxwell’s
equations for circular cylindrical geometries. The concepts
illustrated here can be used to compute the behavior of coaxial
cavity configurations or the scattering from circular cylinders
depending on the choice of boundary conditions used. The key
area of emphasis in this demonstration involves determining
the EE decomposition of A and diagonalizing the resulting
CN matrix equation.

A. Laplace Operator in Polar Coordinates

Let po = (¢ — 1)Ap and p; = (p + 1)Ap, where K =
p — q + 1, represent the radii of the cylinder and the edge
of the finite computational domain, as shown in Fig. 2. In
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p; = (p+Dap

Fig. 2. Geometry and gridding for the CN solution of Maxwell’s equations
near a perfectly conducting circular cylinder.

s

this case, the domain Q of (2) is an annulus between pg and
p1- Also let ¢ represent E,, the Z-polarized electric field
surrounding the circular cylinder. The polar grid is defined
by the points (p = iAp, ¢ = jAg) forg—1<i<p+1
and 1 < j < N, where A¢ = 2x/N. Using this notation
along with the convention that v (iAp, jA¢, mAL) = 1/)5,';),
the five-point finite-difference approximation of the Laplace
operator becomes

V2y(iAp, jAS, mAY)
__1 1\
= (1 7)o
R T IN _ 1
o (1 g vt 2t g

1 m m
+ (iA¢)2[¢§,j4)-1 + ¢§,j11]}~ 9

If the field scattered from the cylinder is to be computed, the
boundary condition

B ;= —EP(po, jA$, mAY) (10)
must be satisfied on the inner domain boundary where Ein¢
represents the incident plane wave (assuming TM? incidence).

In the CN matrix equation, this is accomplished by placing the
known boundary field values into the source vector f{™).

B. EE Decomposition: Dirichlet Boundary Condition

With a Dir}ichlet boundary condition at p; in (9), the matrix
A € RENXKEN 15 (4) becomes block tridiagonal with the form

24 s 1 ' 1
(Ap)A_Trldlag[<1 5 I B; .1+-2—i I

an
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for ¢ < i < p where B; = 3B — 21 € R"*" and g
= (1/iA¢)?. The matrix B is given by

-2 1 0 --- 0 1
1 -2 1 0
0 1 -2 1 0 ---
B=|. : : S (12)
0o --. 0 1 =2 1
1 0o --- 0 1 -2

With A written in the form of (11), it becomes straightfor-
ward to determine its EE decomposition. It can be shown [27,
p. 253] that

B=FDF! 13)

where F and F~! are the direct and inverse one-dimensional
discrete Fourier transform (DFT) operators and D =
Diag {—4sin® [(j — 1)7/N]},1 < j < N. From the definition
of B;, it follows that B; and B share the same set of
eigenvectors but have a different set of eigenvalues. In light
of this, the EE decomposition of B; is given by

B, = F)\,F! (14)
where A; = Diag {\;;} = 8:D — 2I,1 < j < N, such that
Aij = —4B;sin® [(j — 1)7/N] - 2. (15)

Using (14), the matrix A can be written as
(Ap)?A = FRF1 (16)
where
R =Tridiag[(1-1/20)I X, (1+1/2)I] (17)
F =Diag{F,F,---,F} € RKN*KN, (18)

Since the block elements of R are diagonal, it can be trans-
formed to a block diagonal matrix 7 using

R =PPTRPPT = P(PTRP)PT = PTPT (19

where P is the orthogonal permutation matrix which arises in
the two-dimensional DFT. The matrix T is given by

T =Diag {T;} € RENXKEN (20)

T; =Trdiag[(1 - 1/2i) Ai; (1+1/2)] (1)

forg <i<pand1 < j < N. Let the EE decomposition
of T; be given by

T; = Q;4;Q7". 22)

It is noteworthy that since T'; is a sign symmetric matrix,
A; will be a real matrix which can be efficiently computed
using, for example, the RT subroutine provided by EISPACK
[28]. Also, following our discussion in Section II-C, Q]-_1 may
be explicitly obtained by performing the EE decomposition of
T?. Now, defining Q = Diag {Q;} and A = Diag {4;},1 <
7 < N, it follows that

T =040 (23)
Substituting (23) into (19) and (16), we obtain
(Ap)?A=FPOAO 'PTF 1 =046~  (24)
where © = FPQ.
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C. EE Decomposition: Neumann Boundary Condition

For a homogeneous Neumann boundary condition at the
outer domain boundary, we place ¥py2; = 1, ; into (9)
for i = p+ 1 to obtain the block tridiagonal matrix A €
RE'NXK'N (g/ — K 4 1) which assumes the form

(Ap)?A = Tridiag ['in B; <1+'21€>I] (25)
for g <7 < p+ 1 where

1 ,
vi={1"2; 9sisp (26)
2 1=p+ 1.

The similarities between the matrices A and A in (11) imply
that the process for computing their EE decompositions is
similar. To this end, we define the matrices F and P similar
to the matrices F and P, but of dimension K’ N x K’N. The
EE decomposition of A becomes

(Ap)*A = FPOAQ'PTF! @7)
where 7 = Diag{Tj},l <3< N and
T,; = Tridiag {% Aij (1 + %)} (28)

for ¢ <i < p+ 1. The matrix & = Diag {QJ} is computed
from the N EE decompositions

T, =0,4,Q; . 29)

D. Algorithm Structure for the Circular Cylinder

It is important to note that by using the factored form of the
eigenvector matrices @ and @' as formulated above, comple-
tion of the EE decomposition of A is tantamount to performing
the EE decomposition of 2/N matrices of dimension K x K and
can therefore be performed in parallel. Additionally, the flow
charts in Fig. 3 demonstrate the procedure for performing the
matrix-vector products in Steps 2 and 4 as well as the SOILR
solution in Step 3 using the factored matrices. These figures
imply that an additional level of spatial parallelism may be
exploited in the computation, an issue which is explored more
fully in Section I'V. Note that the SOILR in Fig. 3(b) is given
by

'&](.m+l) - 23]"/~J§m) _ 1/;§m—1) + f-’]('m-i-l) (30)

where § = Diag {S;}.
IV. ALGORITHM PERFORMANCE: CIRCULAR CYLINDER

A. Computational Complexity: Time-Parallel

In analyzing the performance of the time-parallel algorithm,
we recall that M represents the number of time steps, and
K and N denote the number of radial and azimuthal cells,
respectively, in the spatial grid. We assume that M processors
are available to fully exploit temporal parallelism. For typical
values of M (of the order of 103) and K and N (of the order
of 10%), we have M > K and M > N. Table I illustrates the
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Fig. 3. Flow diagram illustrating the space-parallelism in the computation
of (a) Step 2, (b) Step 3, and (c) Step 4.

TABLE 1
COMPUTATIONAL COMPLEXITIES OF THE DIFFERENT
STEPS IN THE TIME PARALLEL ALGORITHM

Operation Cost Operation Cost

EE of T; O(K?) SOILR for ¥; O(K log M)
Ui = poifm O(Nlog N) Wi = Q™ O(K?)

™ = s;Q v O(K?) ™ = Fwim O(NlogN)

computational complexity associated with each of the major
operations outlined in Fig. 3 for the time parallel algorithm
applied to the circular cylinder.

Using the expressions in Table I, the overall complexity
of the algorithm assuming O(M) processors and M > 2N
can be determined. The EE decomposition of the 2/V matrices
T; and TJ-T can be performed in parallel at a total cost of
O(K?). The K one-dimensional DFT’s and N multiplications
fj(m) = S]QJTIUZ(;) for Step 2 rcquirc an overall cost of
O(KNlogN + K#N). In Step 3, since the SOILR must be
performed for N vectors 1/31(-'"), the total SOILR cost (using
RDA or CRA [23}) is O(K N log M). Since the cost of Step
4 is the same as that of Step 2, the total computational com-
plexity of the time-parallel algorithm while fully exploiting
temporal parallelism is given by

Crp=0a,K?’N +a;KNlogN +a3sKNlogM  (31)
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where aj, a9, and a3 are constants and lower-degree terms
have been neglected.

B. Computational Complexity: Time- and Space-Parallel

With the availability of a larger number of processors,
spatial parallelism can also be exploited in the computation.
The operations shown in Fig. 3 reveal the structure of the
spatial parallelism in the algorithm.

For a time- and space-parallel computation we consider
using ML processors where L = Max (N, K). With this
strategy, the computation of K one-dimensional DFT’s and
N matrix-vector products in Steps 2 and 4 can now be
done at a cost of O(NlogN) and O(K?), respectively.
Solution of the SOILR’s in Step 3 results in a complexity of
O(K log M). The computational cost of the time- and space-
parallel implementation of the algorithm is therefore given
as

Crsp =b1K? +b;NlogN + b3KlogM  (32)

where by, by, and bs are constants.

Interestingly, even the space-parallel implementation of
Steps 2—4 results in a coarse grain computation with a rather
low communication complexity. The space-paraliel compu-
tation of Step 3 can be performed in a fully decoupled
fashion with no communication requirement. In this step, each
processor performs the operations for parallel computation
of its corresponding SOILR on vectors of dimension K. In
Steps 2 and 4, each processor performs an FFT on vectors of
dimension /N and a multiplication of a K x K matrix by a
K x 1 vector.

The permutations in Steps 2 and 4, however, require com-
munication among processors in the space-parallel computa-
tion. Consider Step 2 [Fig. 3(a)] as an example and let N = K.
Before the permutation, each processor (e.g., processor i)
computes the vector Ul(:n). If these vectors are considered as
the columns of a matrix I/, then the permutation corresponds
to transposing U. In this case, processor ¢ (which initially
contained the ith column of matrix &) will receive the ith row
of UT. The complexity of such a data communication is a
function of the processors interconnection structure. With K
processors interconnected through a Hypercube topology, the
complexity of this matrix transposition is of O(K log K') (see
for example [29]). This implies that, with such interconnection
topology, even the space-parallel implementation of Steps 2
and 4 remains highly compute bound since its computation
complexity of O(K?) is greater than its communication com-
plexity of O(K log K).

C. Computational Speed-up

The speed-up of the time-parallel and time- and space-
parallel algorithms can be measured with respect to the best
sequential explicit method (Yee’s algorithm) and the best
sequential implementation of the CN method for the problem.
The application of Yee’s algorithm to the circular cylinder
essentially requires a matrix-vector multiplication at each time
step. Because the KN x K N matrix involved in this operation
is highly sparse, it can be shown that the computational cost
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Cspy of the sequential implementation of this algorithm is
given as

CSEY = CIMIKN (33)

where ¢; is constant and M’ is the number of time steps
required to achieve the same level of accuracy as for the
CN method. Due to the stability constraints, M’ may be
much greater than M. The speed-up of the time-paralle}
algorithm with respect 1o the sequential implementation of
Yee’s algorithm is then given by
Crp a K K

where it is assumed here and in the following expressions that
K > log N and K > logM.

The speed-up of the time- and space-parallel algorithm with
respect to the sequential implementation of Yee’s algorithm is
given approximately by

_ Cspy _ aM’ —0 M'N
" Crsp  bK/N ( K )
where the last equality holds when O(K) = O(N).

The sequential solution of (4) at each time step involves two
vector additions, each at a cost of O(K V), and one matrix-
vector multiplication to form the right-hand side vector. By
exploiting the structure of A, the matrix-vector multiplication
can also be performed with a cost of O(K N). The solution
vector ¥(™*1D is subsequently obtained by solving a linear
system. Since the matrices (I — @A) and A have a similar
structure, this linear system solution is equivalent to the
solution of the Poisson equation in polar coordinates which
can be performed using the fast Poisson solver [30] with a
complexity of O(K N log N). It then follows that the cost of
the best sequential algorithm for solution of (4), denoted as
Cscn, is given by

Csen =diMKNlog N +doMKN (36)

(34)

SP; =0(M') (35

where d; and d» are constants. The speed-up of the time-
parallel algorithm with respect to the best sequential algorithm
for computation of (4) is then given approximately by
Cscny diMlogN Mlog N
SP; = = =0 . 37
7 Crp aK K a7
The speed-up of the time- and space-parallel algorithm with
respect to the best sequential algorithm for computation of (4)
is obtained approximately as
Cscn diMlog N
C TSP alK / N
MNlog N
= O —
(%
Table 11 summarizes the asymptotic computational complex-
ity of the serial and parallel algorithms and the number of
processors required. As can be seen from (34)-(38), the time-
parailel and time- and space-parallel implementation of our
algorithm leads to a massive speed-up in the computation
while resulting in highly coarse grain parallel computation
with simple communication and synchronization requirements.

SP4:

) = O(Mlog N). (38)
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TABLE II
COMPARISON OF SERJAL AND PARALLEL ALGORITHMS
Sequential Parallel
Explicit Implicit Time Time/Space
(Yee's) CN Parallel Parallel
Computational O(M'KN) O(MKNlogN) O(KN) O(K?)
Complexity
Number of - - O(M) O(ML)

Processors

For typical values of M’ (of the order of 10*), M (of the
order of 10%), and K and N (of the order of 10?), the time-
parallel implementation of our algorithm leads to more than
two orders-of-magnitude speed-up in the computation over the
best sequential explicit and implicit methods. An even more
impressive speed-up is possible using the time- and space-
parallel implementation of the algorithm which, when used
with a massive number of processors, is several orders-of-
magnitude faster than the best sequential algorithm.

It is noteworthy that the time-parallel algorithm performance
increases for problems requiring a much larger number of
time steps. This follows from the fact that time dependence
occurs only in the computation of Step 3, with a dependency
of O(log M), while the dominant parts of the computation
(Steps 2 and 4) are fully decoupled in time and are therefore
independent of M.

V. GENERALIZATION OF TIME-PARALLEL APPROACH

Provided that the matrix A is nonsingular, the diagonaliza-
tion process of Section II can be applied to any time-stepping
procedure for solution of Maxwell’s cquations. Hence, the
main issue in generalization of the approach is not the domain
of applicability but rather the computational efficiency. As
indicated in Section II-C, efficient application of the time-
parallel approach requires fast schemes for computing the
eigenpairs of A and multiplying the matrix of eigenvectors
by a vector. We have identified three main techniques for
accomplishing these tasks for more general problems.

A. Analytical Expressions

For a few simple cases involving regular domains, an
analytical expression for the eigenpairs of A'is known a priori.
Well-known examples are cases involving two- and three-
dimensional square and cubical domains. This approach allows
extremely efficient application of the time-parallel algorithm.
It appears, however, that the domain of applicability for this
approach remains quite limited.

B. Divide and Conquer

The second technique exploits the specific structure of
A by reducing the computation of cigenpairs of A to the
computation of eigenpairs of a set of simpler matrices. Such
a divide and conquer approach was applied to the problem
in Section III. As seen in that example, this technique is
highly efficient with an optimal computational complexity for
most cases and furthermore can be accomplished in parallel.
Additionally, the resulting matrix of eigenvectors can be
efficiently multiplied by a vector by using the factored matrix
form.

15 R R 5
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C. General Sparse Matrix Techniques

For problems where these methods can not be applied, the
highly sparse structure of A must be exploited to efficiently
compute its eigenpairs [31]. Because the key objective is to
multiply the matrix of eigenvectors by a vector, it is more
efficient to obtain this matrix in a factored form to improve
the efficiency of this matrix-vector multiplication. This is a
clear departure from most conventional sparse eigenproblem
techniques wherein the explicit computation of the matrix of
eigenvectors is sought.

VI. CONCLUSION

In this paper, we have introduced a novel time-parallel
approach for solving Maxwell’s equations using FDTD tech-
niques. The algorithm provides a massive degree of coarse
grain parallelism with simple communication and synchroniza-
tion requirements. Furthermore, in contrast to previous work
which has emphasized the use of explicit FDTD methods,
this approach exploits the superior numerical properties of
the implicit CN method. The application of the algorithm
to solution of a testbed problem has illustrated the massive
speed-up that can be achieved by exploiting temporal and
spatial parallelism. Work is currently underway to implement
the algorithm on the Touchstone Delta supercomputer for the
circular cylinder problem discussed in this paper as well as
for other problems. Preliminary results from these implemen-
tations have been presented in [26]. A more extensive review
of the algorithm performance will be presented in a future
correspondence.

In general, however, even the exploitation of full temporal
parallelism alone requires a number of processors which,
by far, exceeds that offered by the current generation of
massively parallel MIMD architectures. Future generations
of these architectures are expected to employ many thou-
sands of processors and to achieve a Teraflop computing
capability. Our preliminary results clearly point to a new
direction in massively parallel CEM which would enable
efficient application of these future architectures to various
CEM problems. To achieve this goal, however, further research
work is needed to extend the domain of efficient applicability
of our approach. To this end, the discussion in Section V
provides a useful framework for further application of the
time-parallel computing approach.

APPENDIX
CN DISCRETIZATION

Let D? represent the finite-difference approximation to the
Laplace operator V2. With this notation, the CN approxima-
tion to (2) at the point (4,5) in a two-dimensional space may
be written as

(m+1) _ g(m) 4 y(m=1)
i~ 2yt
At?

2
c m m—
= ST + DT+ & (39

2J

where w§j§> represents the unknown field at time ¢ = mAt
at the discretization point. Combining terms with equal time
indexes, (39) may be expressed in the form

C2At2 m [0 ~2
R P .

+ g (40)

If we now spatially order the unknowns 1/)5?) into a column
vector-and express the D? operator as the matrix A, we obtain

(I — @A)+ = 2Iy™ — (I — aA)yp™ ™ + fmt)
(41

where a = c2At2/2 and f(™+1) may contain values of ¥; ;
which are known in the domain as well as the discretized
source term.
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