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Abstract: Analysis of two mutually coupled loop
antennas with arbitrary relative orientation and
position and possibly different geometries is pre-
sented. The antennas are represented by gener-
alised superquadric curves, which include circular,
elliptical, and rectangular loop geometries, and
they may be located either in a homogeneous
region or next to an infinite ground plane. A
Galerkin-type moment method with piecewise
sinusoidal subsectional basis and weighting func-
tions is used. Special consideration is given to
implement the solution using curved wire seg-
ments instead of the commonly employed linear
segments to improve computational efficiency.
This very general computational tool is used to
investigate the behaviour of coupled loops in con-
figurations suitable for personal communications
applications. A discussion of the use of antenna
diversity to increase thc rcccived signal-to-noise
ratio for communications equipment used in a
multipath fading environment is also presented.
Computational examples show that antenna
diversity can provide significant improvements
even for closely spaced loop antennas used in
mobile communications applications.

1 Introduction

The increasing effort in miniaturisation of mobile com-
munications equipment has spurred the development of
small, low-profile antennas suitable for implementation
in portable devices. In many instances, the circular or
noncircular loop antenna provides an efficient radiator
for the application. Whereas in the past a single antenna
element has been used for mobile transceivers, the desire
to combat multipath fading has led to the use of multiple
elements arranged in a suitable diversity scheme. When
more than one element is used, an important design con-
sideration is the effect of mutual coupling on the antenna
performance. The work presented here has been per-
formed to provide an understanding of the behaviour of
electrically coupled circular and noncircular loop radi-
ators with arbitrary relative positions and orientations.
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To our best knowledge, there has not been a unified
solution methodology allowing analysis of very generally
shaped loops with arbitrary orientations and positions.
Past research efforts have to some extent addressed issues
related to this work and have provided useful design
data. For example, several theoretical investigations into
the behaviour of circular loop antennas have been per-
formed using a Fourier series expansion for the loop
current distribution [1-7]. This analysis has been
extended to the case of two identical, parallel loops
arranged in either a coaxial arrangement [8] or with
offset axes [9] to determine the mutual impedance
between the clements. The characteristics of polygonal
loops comprised of linear wire segments have been evalu-
ated using a moment method solution approach [10].
The effects of relative antenna position and orientation
on the mutual coupling between two closely spaced
dipole antennas has also been demonstrated [11].

In this work, we present a unified formulation which
can be used to characterise not only circular loops but
also numerous other geometrical configurations, includ-
ing square loops and folded dipoles, through use of the
mathematical construction of the superquadric curve
[12]. The methodology allows analysis of two coupled
superquadric loops of possibly different geometries and
with completely arbitrary relative orientation and posi-
tion, located either in a homogeneous medium or near an
infinite ground plane. The solution technique employs a
piecewise sinusoidal Galerkin moment method [13] to
determine the antenna current distribution from a
coupled electric-field integral equation (EFIE) for thin
wires [14]. By performing the integrations necessary for
the moment method implementation along the curved
path representing the antenna, the accuracy and effi-
ciency of the formulation is enhanced [15]. The current
obtained is subsequently used to find the self and mutual
impedances, input impedance, directivity, and radiation
pattern for the coupled-loop antennas. Both magnetic
frill and delta gap source models are employed to allow
investigation of different possible feeding scenarios.

Following presentation of the preliminary mathemat-
ical derivations associated with the superquadric curve
geometry and moment-method solution, attention is
turned to the concept of antenna diversity to mitigate the
effects of multipath fading at a mobile terminal [16-19].

This work is funded by ARPA contract DAABO7-
93-C-C501. M. Jensen’s work is also supported
under a National Science Foundation graduate
fellowship.
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Several key expressions are presented which provide a
quantitative measure of the diversity performance of
coupled antennas. Computational results for several rep-
resentative isolated and coupled-loop configurations are
then provided to illustrate the accuracy and flexibility of
the solution methodology and to provide an understand-
ing of the behaviour of loop antennas designed for wire-
less personal communications system applications.

2 Superquadric representation for loops

A superquadric curve [12] is the locus of points satisfying
the equation

v

- 1
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where a and b are the semiaxes in the x and y-directions,
respectively, and v is a squareness parameter which con-
trols the behaviour of the loop radius of curvature. A
parametric represcntation for the superquadric curve is
provided in Section 8. Fig. 1 illustrates the effect of the
squareness parameter by presenting the curve geometry
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Fig. 1  Superquadric geometry with aspect ratio of bja = 2
v=2

-——= v=3

------- v=10

for v = 2, 3, and 10 and an aspect ratio of b/a = 2. As can
be seen from this Figure, a value of v = 2 corresponds to
an ellipse while the loop squareness increases with v. It is
evident that the superquadric representation allows mod-
elling of numerous different loop configurations through
variation of the shape parameters a, b, and v. Also, the
model’s capability to provide rounded corners on other-
wise rectangular loops allows accurate representation of
many practical geometries. This flexibility in geometrical
configuration selection can be very useful for antenna
packaging considerations.

Fig. 2 presents the geometry for the two coupled
superquadric loops. Each loop is positioned in its own
co-ordinate frame with the subscripts 1 and 2 denoting
parameters associated with loops 1 and 2, respectively.
The translation vectors ro,; and ry, and the Eulerian
angles [20] («,, B4, v,) and (a5, B, , 7,) designate the posi-
tions and orientations, respectively, of each loop co-
ordinate frame with respect to the reference co-ordinate
system. The co-ordinates s; and s, are the lengths of the
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curves measured from the feed points situated on each
positive x-axis. The proper transformations required to

Fig. 2  Geometry of two coupled loop antennas showing co-ordinates

relate the loop co-ordinate systems to the reference frame
in terms of the Eulerian angles and translation vectors
are provided in Reference 20.

3 Moment method solution

3.1 Integral equation formulation

Analysis of the coupled superquadric loop antennas
begins with the development of integral equations relat-
ing the currents on the wires to the excitation field
applied at the antenna feed points. To formulate these
integral equations, we used a thin-wire assumption which
approximates the surface current density on the loops as
filamentary currents I,(s,) and I,(s,) which flow in the
axial directions only. The thin-wire form of the electric-
field integral equation [14] can be manipulated to
incorporate the effects of mutual coupling between the
two loops as in

§1Em(51)
1 . 31,(s1) 961
= v, I ’ ————— 4
dmjoe, {J;l [koslsl 151Gy + 2, 0s, dsy
. , ol,(s%) 0G ,
+J;2 [k55152 Iy(s7)Gy, + 62s'22 asllz ds’,
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—1 PR 01(s1) 0Gyy | ,,
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1A m , 2(82 22 ,
—=|d 2
+ L Z [kos2 §, I5(s5)G3a + 25, s, ] 52} ()
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¢~ JkoRp
GPq = R

pq

and the unit vectors §; and §, are in the direction of the
co-ordinates s, and s,, respectively. L, and L, denote
integration over each loop perimeter. The constant k, =
2m/4 is the free-space wavenumber and R, represents the
distance from the observation point on loop p to the
source point on loop g, where p, g =1, 2. Although the
integrations in eqn. 2 are performed in the local co-
ordinates of each antenna, the components of the unit
and field vectors must be expressed in the reference co-
ordinate system to ensure proper evaluation of the vector
inner products. These integral equations can be aug-
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mented to allow analysis of loops over an infinite ground
plane through addition of terms representing the loop
image.

When computing the value of R,,, the thin-wire
assumption allows the approximation that the observa-
tion point is along the wire axis rather than the wire
surface. The source point is chosen according to the con-
vention that the point is on the wire surface at z, =r,, if
p = q (r,, = wire radius of loop p), and on the wire axis if
p #q. Use of this convention provides a convenient
method for overcoming the difficulties associated with
the singular integrand for coincident source and observa-
tion points. Computation of the distance R, is most con-
veniently performed in the reference co-ordinate system.

3.2 Moment method solution: curved subsections

To apply the integral equations of eqn. 2 to the super-
quadric geometry, we used the parametric representation
developed in Section 8. This involves changing the func-
tions of s to functions of the parameter 7 and integrating
over the range 0 < 7 < 2n. An important feature of the
use of this parametric construction for the superquadric
loop is that curved wire segments, rather than the com-
monly used piecewise-linear segments, are implemented
to represent the geometry. Recent developments have
shown that such a practice proves to be more computa-
tionally efficient [15].

The moment method matrix is formed from the integ-
ral equations by dividing the curve into discrete segments
at the points 7,, n = 1 to N. A Galerkin moment method
approach with piecewise sinusoidal subsectional basis
and testing functions of the form

sin (1 — 1,_4)

- ifr, <1<
sin (tn_rn—l) " "

sin (7, -1 . 3
,——(L——) ifr, <T< 1,44 )
sin (Tn+l - Tn)

D) =

0 otherwise

is then implemented to create the linear system whose
unknown vector represents the currents I;(s;) and I,(s,)
on the coupled loop antennas.

The excitation vector in the matrix equation is
obtained using either the delta gap or magnetic frill
source model. In the delta gap model, the impressed field
is assumed constant and to exist only in a small feeding
gap in the loop conductor. The field value is given by
§-E™"™ = V/Ag, where Ag is the gap width and V is the
impressed feed voltage. In general, Ag is not constrained
to equal the subsectional arc length. The magnetic frill
source model [6, 21] uses an annular ring of magnetic
current at the antenna feed point to represent the excita-
tion from a coaxial line feeding a half loop over a large
ground plane. Using image theory, the half loop with the
ground plane can be represented as a full loop with the
magnetic frill plus its image, as shown in Fig. 3. The inner
and outer radii of the annular current ring correspond to
the coaxial inner and outer wire radii r,, and a,, respect-
ively, which are related by a, = 2.3r, for an air-filled
50 Q coaxial cable. It is important to recognise that the
current and input admittance of the half loop are twice
those of the full loop antenna model of Fig. 3.

Once the currents I,(s,) and I,(s,) have been deter-
mined from the coupled integral equations, the far-field
radiation pattern for the superquadric loops can be
obtained from the radiation integral. As shown later,
evaluation of the antenna diversity performance of the
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coupled antennas requires distinction between the contri-
bution from each loop to the overall pattern. Thercfore,

(=)

magnetic frill
20q >4—

i
\_ - _ J
i

Full loop model of half-loop excited by magnetic frill source

Fig. 3

we express the pattern duc to each antenna as

. — jkor
E,(0, $) :—%‘Ef—r— L 1,(5,)5, exp (jko# - F}) ds), (4)
P
for p = 1, 2, where r is the distance from the co-ordinate
origin to the field observation distance and r), is the posi-
tion vector as defined in Fig. 2. Once again, the vector
components in eqn. 4 should be expressed in the refer-
ence co-ordinates to allow proper evaluation of the
vector inner products. The total pattern may then be

written as the sum

E(0, ¢) = E (0, ¢) + E(6, ¢) ©)

4 Mobile communications scenario

One of the objectives of this work is to determine the
performance of the coupled superquadric loop antennas
when used in a diversity scheme for a mobile commun-
jcations system. In this application, we are interested in
the use of space, angle, and polarisation diversity to
combat the effects of short-term or Rayleigh-type fading
in a multipath environment. This type of fading occurs
when multiple waves with random phases exist simultan-
eously to produce a spatial interference pattern, causing
the received signal strength to vary with antenna posi-
tion. Antenna diversity operates on the concept that by
providing multiple antennas for a single receiver, there is
an increased probability that at least one of the antenna
elements will receive a signal of adequate strength. Such
antenna diversity scenarios are becoming more predom-
inant as communications systems demand increased
signal quality and reliability.

Quantitative evaluation of the performance of multiple
antennas configured in a diversity arrangement involves
investigation of the statistics of the signals received by the
elements through examination of the envelope corre-
lation coefficient p,. This quantity provides a measure of
the similarity of the voltages at each antenna terminal
and should ideally be zero for maximal diversity per-
formance (assuming Rayleigh distributed field strengths).
For simplicity, the discussion here is concerned with, two
antennas only, although additional antennas may be
analysed by the same procedure [16-19].

Although the statistical behaviour of the fields in a
multipath fading environment as well as the expressions
for the correlation coefficient for two antennas have been
addressed at length in the literature [16-17], a brief pres-
entation of the key assumptions made in developing these
expressions is provided. In all expressions, the variables 0
and ¢ are taken with respect to a co-ordinate system
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oriented with the z-axis perpendicular to the earth. The
following are the basic assumptions applied in the theo-
retical analysis: ) )

(@) The Rayleigh probability density function describes
the envelope of the fading signal, leading to zero-mean
complex Gaussian descriptions of the voltages received
by the two antennas [17].

(b) Orthogonal polarisations in the incoming multi-
path wave are uncorrelated, equally likely, and character-
ised by powerﬂdensities per steradian S0, ¢) and Sy(6, @)
for the 6 and ¢ polarisations, respectively.

(¢) Each individual polarisation is spatially uncor-
related (i.e. wave incoming at (6, @) is uncorre‘}ated with
wave at (0", ¢') for 6’ # 6 or ¢’ # ¢).

(d) The spatial distribution of the incoming multipath
waves is limited to the horizontal plane’only 0 =mn/2)
and the power density for each wave is a constant over
this plane (ie. Se(n/2, ¢)=S§ = constant, and S,(n/2,
$) = S = constant).

Using these assumptions leads to an expression for the
envelope correlation coefficient for the signals received by
the two antennas which assumes the form [16]

oo = | [3 Ey(n/2, ¢) - EX(n/2, ¢) do|* ©)
© 7§31 Ey(n/2, 9) 1 do [5 | Ex(m/2, §)1” d¢

where E0, ¢) = Eo, (0, ) + E, 0, $)$ is the vector
radiation pattern associated with antenna p obtained
from eqn. 4 for the case of the coupled loop antennas.
There arises some question concerning precisely which
currents to use to obtain the patterns E, in eqn. 6. For
instance, isolated or coupled loop configurations may be
used in the computation for the current on cach loop. If a
coupled loop configuration is used, the second antenna
may be either excited or terminated in an open circuit or
matched load. In the examples shown in this work, the
currents on each antenna are computed by using ident-
ical excitations for both antennas. This scheme fully
includes the effects of mutual coupling on the antenna
current behaviour. The currents obtained are subse-
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quently placed in eqn. 4 to compute the patterns associ-
ated with each loop. ' o

Fig. 4 shows the cumulative probability distribution of
the signal-to-noise ratio (SNR) normalised to its average
((SNR)) for various values of p, and for two-antenna
diversity. Maximal ratio combining in which the two
signals are received, cophased, properly weighted, and
added is assumed in this plot. Also shown is the Rayleigh
distribution which corresponds to a single antenna in the
multipath environment. As can be seen, reduction of the
envelope correlation coefficient provides a considerable
increase in the probability of receiving a signal of ade-
quate strength for reliable communication. In light of
this, the goal in diversity antenna design is to minimise
this factor to the extent possible using a combination of
spatial, angle, and polarisation diversity.

5 Computational examples

The preceding developments can be used to perform
some computational studies on the characteristics of
coupled superquadric loop antennas. Throughout this
Section a wire radius r,, is used such that

Qo=21n;}i=10 )]

w

is satisfied, where P is the loop perimeter. Five-point
Gaussian quadrature integration is used to evaluate the
integrals over each subsection. Where the magnetic frill
generator source is implemented, the frill dimensions are
chosen to match those of a 50 Q feeding coaxial line.
Numerical tests of the moment method algorithm were
performed to ensure that small enough subsections were
used to obtain convergent values for the input imped-
ancc.

5.1 Parallel circular loops

Before demonstrating the versatility of the computational
model, it is interesting to investigate the correspondence
between the results of this work and previously obtained
results for parallel circular coupled loop antennas. Fig. 5
illustrates a typical plot of self and mutual admittance
against separation z, for the case of two circular loops
with circumferences P of 0.24, 0.44, 0.64, and 0.84. The
magnetic frill source was used for the configuration
shown in the inset of Fig. 5a. This plot indicates the
increase in mutual coupling with increased loop dimen-
sions characterised by higher mutual admittance values
and more pronounced admittance variation with separa-
tion distance. Also noteworthy is the reduction in mutual
admittance with increased separation, resulting in self
admittances which asymptotically approach the input
admittance values for isolated loops of 0.00603 — j3.36,
0.0370 — j0.494, 0.173 + j1.28, and 0.900 + j3.38 mS for
loop sizes of 0.24, 0.44, 0.64, and 0.84, respectively.
Finally, this computation illustrates the low admittance
(high impedance) values which result in the impedance
matching problem for loops near 0.51. The dots in the
Figure are values taken from a study by lizuka et al. [8].
It is clear that excellent agreement is obtained between
the two sets of results over a wide range of loop sizes and
separations. This comparison supports the model’s capa-
bility to faithfully reproduce the results of previous
studies and provides insight into the effect of antenna
separation on the mutual admittance of the coupled
loops.
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5.2 Current distribution
When two superquadric loop antennas are operating in
close proximity to each other, it is expected that the
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mutual coupling will affect the current distribution along
the wires. Fig. 6 illustrates this effect for a nearly rec-
tangular 0.8 loop with v = 30 and b/a = 2. The current
magnitude is normalised to the antenna input voltage. In
this example, the solid line represents the current magni-
tude and phase for the loop when it operates in phase
with an identical loop located z, = 0.24 from and parallel
to the antenna. The dashed line represents the current
distribution for the same loop operating in an isolated
environment. As can be seen, although the general behav-
iour of the current is unchanged, the levels and detailed
variation of the current are noticeably influenced by the
presence of the second antenna. Especially noteworthy is
the substantial decrease in the current magnitude along
the wire near the point opposite the feed at s = 0.41.
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5.3 Loops near an infinite ground plane
One of the practical uses of the loop is in communica-
tions equipment, where the loop may possibly be near a
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Fig. 6  Current distribution against perimeter co-ordinate s for a 0.82
loop (v = 30, b/a = 2) parallel to and located z, = 0.2A from identically
shaped and excited antenna compared to that of isolated loop

coupled loops
- ——— isolated loop

finite-size conducting plate or other body. A first-order
approximation of the behaviour of the loop in this
environment may be obtained by solving the problem for
the loop near an infinite ground plane. For example, Fig.
7a shows a 0.21 nearly rectangular (v = 50) loop located
¢ = 0.014 from an infinite planar conductor for three dif-
ferent positions of the source. The variation of the input
impedance versus the aspect ratio b/a is illustrated in Fig.
7b for a delta gap generator with Ag = 0.0034. It is
evident that both the source location and the aspect ratio
play a role in determining the loop input impedance for
this configuration.

Fig. 8 shows the far-field radiation patterns obtained
for a 0.254 elliptical loop (v = 2) of aspect ratio b/a =2
oriented parallel to and located 0.14 from the ground
plane as illustrated in the inset. For comparison, the
pattern for the same loop isolated from the groufnd plane
is also provided. The patterns are normalised to represent
the antenna d1rcct1v1ty and are shown for the principal
planes only. As is expected, the presence of the conduct-
ing sheet results in a null field at 6 = 90° and noticeably
increases the boresight antenna directivity. The E, com-
ponent in the ¢ =0° cut is not included because it
experiences a null in this plane. Table 1 compares the
input impedance and total real power radiated by the
loop in Fig. 8 for the isolated and ground plane conﬁgu-
rations. As expected, the presence of the ground: plane
significantly reduces the total power radiated by thE loop
antenna.

Table 1: Input impedance and radiated power (normalised
to square of input voltage) comparison for loop tonfigu-
rations of Fig. 8

Configuration Input impedance Radiated power

mw/\V?
Ground plane 0.267 +;383.94 Q 0.0543
Isolated 1.382+,385650Q 0.279
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5.4 Concentric loops
In many systems, multiple loop antennas may be posi-
tioned such that they are in a concentric configuration.
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Fig. 7 0.21 loop with v = 50 located ¢ = 0.01A from infinite conduct-
ing plane for three source positions
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An cxamplc of this typc of situation is illustrated in the
inset of Fig. 9, where the larger and smaller loops each
have a 0.254 perimeter at their operating frequencies of f;
and 3f,, respectively. The loops have aspect ratios of
b/a =1 and are excited using a delta-gap source model.
For these computations, each loop is in turn excited at its
operating frequency while a short circuit is placed across
the terminals of the other loop. The curves in Fig. 9
compare the variation in the input impedance versus the
squareness parameter v for each loop as well as that of an
isolated 0.252 loop. From these results, we conclude that
the presence of the second loop has a significant effect on
the impedance values. This plot further illustrates the role
of the loop squareness in determining its terminal imped-
ance. These results can be very useful in the design of
coupled loop antennas for communications applications.
A second interesting configuration is shown in the
inset of Fig. 10 where two loops are arranged in a cross
geometry and placed at z, = 0.264 above an infinite
ground plane. Each loop is fed using a delta gap source
model and has superquadric parameters of v = 10 and
a = 2.5b = 0.1254. Fig. 10a and b provide the far-zone
radiation patterns in dB normalised to represent the
antenna directivity in the xz (or yz) and xy-planes,

90

respectively, when the two loops are fed in phase. Fig. 10¢
and d provide the directivity patterns in dB in the xy-
plane for the same configuration when the two loops are

N

Fig. 8  Directivity pattern for 0.25) elliptical loop of aspect ratio
bj/a = 2 both isolated and located 0.14 from infinite ground plane

a é-polarisation, @ = 0° plane (E, is null)

b ¢-polarisation, ¢ = 90° plane

¢ @-polarisation, ¢ = 90° plane
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Fig. 9  Input impedance against squareness parameter v for concentric
0.25 loops with b/a = 1 compared with that of isolated loop
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fed 45° and 90° out of phase, respectively. As can be seen,
through proper variation of the feeding voltages, the
antenna radiation pattern can be made to be omnidirec-
tional in the horizontal plane.

20°\
%40 :

270°

|E},dB
C

rd

)

Fig. 12 illustrates the effects of antenna rotation on t_he
envelope correlation coefficient for the 0.254 loop with
v = 10 and b/a = 1. Results for antenna separations y, of
0.1, 0.24, 0.34, and 0.42 are given as a function of the

2007\

240 :
270°

|E}.dB
d

Fig. 10  Directivity patterns in dB for two crossed superquadric loops at z, = 0.26A over infinite ground plane withv = 10 and a = 2.5b = 0.1254

a xz-plane pattern with loops excited in phase

b xy-plane pattern with loops excited in phase

¢ xy-plane pattern with loops excited 45° degrees out of phase
d xy-plane pattern with loops excited 90° degrees out of phase
—— E,

~--- E,

5.5 Diversity

The diversity performance of small antennas is an
important consideration in the design of personal com-
munications networks. To determine the diversity per-
formance of a given antenna configuration, the loops are
each excited with the same feed voltage and the currents
are determined using the formulation presented in this
paper. The envelope correlation coefficient is then com-
puted using eqn. 6 in conjunction with eqn. 4. Fig. 11
provides a plot of the envelope correlation coefficient as a
function of loop separation y, for the case of two parallel
loops as depicted in the inset. In this Figure, the solid line
represents p, for two antennas with isotropic patterns in
the xy-plane [19]. The remaining curves show p, for
loops with perimeters 0.254, 0.504, 0.754, and 1.04 with
v=10 and b/a = 1. This plot demonstrates the well
known theortical zero in the correlation coefficient for
antenna spacings near 0.4/, which would therefore be the
ideal operating point. However, in smaller systems where
this separation is not physically possible, reasonable
diversity performance can still be achieved for spacings as
low as 0.151 where p, ~ 0.7.
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Fig. 11 Envelope correlation coefficient against separation distance
for loops of perimeter P with bja =1 and v = 10 compared with that of
two antennas with isotropic patterns in horizontal plane
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rotation B of the second loop while the first loop is h_eld
stationary. As the antenna rotates, angle and polarisation

1.0¢

0.8

0.2

0.0
0

Fig. 12  Envelope correlation coefficient against rotation angle for
0.254 loops with bja = 1 and v = 10 for various separation distances

Yo =0.14
—— == yo=024
------- Yo =034
Yo =041

diversity result in a dramatic decrease in the signal corre-
lation. Such an arrangement of antennas can be a useful
means of achieving high diversity returns in mobile units
where space is an important consideration, and in fact
has been implemented in some cases [17, p. 148].-

6 Conclusion

In this work we have presented the development of a
computational model of two coupled loop radiators with
arbitrary relative orientation and position. Use of the
superquadric curve to represent the loop geometries
allows investigation of a large range of Ppractical
antennas, including circular, elliptical, and rectangular
loops, using one general analysis. A Galerkin method of
moments technique with piecewise sinusoidal sub-
sectional basis functions has been applied to solve the
electric field integral equation for thin wires using a para-
metric representation of the superquadric loop. This con-
struction allows the antenna to be represented with
curved rather than piecewise linear subsectional seg-
ments, resulting in a computationally efficient algorithm.
The current distribution in the loops computed from the
integral equation is subsequently used to obtain the
antenna self, mutual, and input impedance and directivity
pattern. Several representative results have been given
which not only provide insight into the effects of such
factors as the loop squareness and aspect ratio on the
antenna behaviour but also show the model’s versatility
in analysing many different types of structures. These
examples further allow determination of the effect of
placing the two loops in close proximity to each other as
might occur in mobile communications applications. In
many cases where the system configuration places con-
straints on the antenna shape, size, and position, incor-
poration of this formulation in the design process can
help in determining the most suitable configuration to
meet the needs of the system.

We have also discussed the concept of antenna divers-
ity and have presented the expression for computing the
envelope correlation coefficient for signals received by
multiple antennas. This expression was applied to several
coupled loop arrangements to illustrate the potential
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diversity performance of these radiators when used in a
proper configuration. We have shown that with proper
orientation and spacing, good diversity action can be
obtained even for antennas which are spaced closely
together. This information is crucial to the development
of robust mobile receiver units designed for use in a
multipath environment.
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8 Appendix

8.1 Superquadric parametrisation

To permit the use of curved subsectional wire segments
in the moment method analysis of superquadric loop
antennas, it is necessary to first parametrise the curve in a
convenient form. Among the many parametrisations pos-
sible, observation has shown that a form which provides
mathematical simplicity and numerical stability uses the
parameter T and assumes the form

x = ay(t) cos T ®
y = by(z) sin © )
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where
1
VO = sin <l + [cos <)

and 0 < 7 < 2n. The unit tangent vector § in the direction
of the perimeter co-ordinate s is

(10)

—a|sin 7|"~ ! sgn (sin 1) A
(1)
b|cos T|"~ ! sgn (cos 1) 5

(1)

§=

an
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where
Y1) = J(@*|sin t|>*~2 + b*|cos T|** ) (12)

The differential arc length ds in terms of the differential
dr is expressed by

ds = |r.| dt = YW " (1) dt = A(r) dr (13)
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